Integrating Dynamic Network Analysis with AI for Enhanced Epitope Prediction in PD-L1:Affibody Interactions

表位 计算生物学 化学 表位定位 线性表位 生物系统 计算机科学 人工智能 生物 遗传学 抗原
作者
Diego E. B. Gomes,Byeongseon Yang,Rosario Vanella,Michael A. Nash,Rafael C. Bernardi
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
被引量:1
标识
DOI:10.1021/jacs.4c05869
摘要

Understanding binding epitopes involved in protein–protein interactions and accurately determining their structure are long-standing goals with broad applicability in industry and biomedicine. Although various experimental methods for binding epitope determination exist, these approaches are typically low throughput and cost-intensive. Computational methods have potential to accelerate epitope predictions; however, recently developed artificial intelligence (AI)-based methods frequently fail to predict epitopes of synthetic binding domains with few natural homologues. Here we have developed an integrated method employing generalized-correlation-based dynamic network analysis on multiple molecular dynamics (MD) trajectories, initiated from AlphaFold2Multimer structures, to unravel the structure and binding epitope of the therapeutic PD-L1:Affibody complex. Both AlphaFold2 and conventional molecular dynamics trajectory analysis were ineffective in distinguishing between two proposed binding models, parallel and perpendicular. However, our integrated approach, utilizing dynamic network analysis, demonstrated that the perpendicular mode was significantly more stable. These predictions were validated using a suite of experimental epitope mapping protocols, including cross-linking mass spectrometry and next-generation sequencing-based deep mutational scanning. Conversely, AlphaFold3 failed to predict a structure bound in the perpendicular pose, highlighting the necessity for exploratory research in the search for binding epitopes and challenging the notion that AI-generated protein structures can be accepted without scrutiny. Our research underscores the potential of employing dynamic network analysis to enhance AI-based structure predictions for more accurate identification of protein–protein interaction interfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴成完成签到,获得积分10
1秒前
哭泣蛋挞完成签到 ,获得积分10
1秒前
1秒前
1秒前
几酌应助小钱钱采纳,获得10
1秒前
打打应助平淡的浩宇采纳,获得10
2秒前
shayla完成签到,获得积分20
3秒前
忧心的雁发布了新的文献求助30
5秒前
喜悦语堂发布了新的文献求助10
5秒前
6秒前
7秒前
Feng5945发布了新的文献求助10
7秒前
7秒前
小尾巴发布了新的文献求助10
10秒前
10秒前
郝宝真发布了新的文献求助10
11秒前
ymym发布了新的文献求助10
12秒前
黑大侠完成签到 ,获得积分10
12秒前
12秒前
12秒前
贝肯妮应助寒澈采纳,获得10
13秒前
14秒前
哈哈哈666完成签到,获得积分10
14秒前
喜悦语堂完成签到,获得积分10
16秒前
yang完成签到,获得积分10
16秒前
17秒前
18秒前
18秒前
18秒前
Miller应助金金采纳,获得20
18秒前
经竺发布了新的文献求助10
20秒前
李爱国应助科研通管家采纳,获得10
21秒前
21秒前
李爱国应助科研通管家采纳,获得10
21秒前
夏晴完成签到,获得积分10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
慕青应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得30
21秒前
今后应助科研通管家采纳,获得10
21秒前
酷波er应助科研通管家采纳,获得10
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162863
求助须知:如何正确求助?哪些是违规求助? 2813883
关于积分的说明 7902296
捐赠科研通 2473504
什么是DOI,文献DOI怎么找? 1316868
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187