亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrating Dynamic Network Analysis with AI for Enhanced Epitope Prediction in PD-L1:Affibody Interactions

表位 计算生物学 化学 表位定位 线性表位 生物系统 计算机科学 人工智能 生物 遗传学 抗原
作者
Diego E. B. Gomes,Byeongseon Yang,Rosario Vanella,Michael A. Nash,Rafael C. Bernardi
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (34): 23842-23853 被引量:5
标识
DOI:10.1021/jacs.4c05869
摘要

Understanding binding epitopes involved in protein–protein interactions and accurately determining their structure are long-standing goals with broad applicability in industry and biomedicine. Although various experimental methods for binding epitope determination exist, these approaches are typically low throughput and cost-intensive. Computational methods have potential to accelerate epitope predictions; however, recently developed artificial intelligence (AI)-based methods frequently fail to predict epitopes of synthetic binding domains with few natural homologues. Here we have developed an integrated method employing generalized-correlation-based dynamic network analysis on multiple molecular dynamics (MD) trajectories, initiated from AlphaFold2Multimer structures, to unravel the structure and binding epitope of the therapeutic PD-L1:Affibody complex. Both AlphaFold2 and conventional molecular dynamics trajectory analysis were ineffective in distinguishing between two proposed binding models, parallel and perpendicular. However, our integrated approach, utilizing dynamic network analysis, demonstrated that the perpendicular mode was significantly more stable. These predictions were validated using a suite of experimental epitope mapping protocols, including cross-linking mass spectrometry and next-generation sequencing-based deep mutational scanning. Conversely, AlphaFold3 failed to predict a structure bound in the perpendicular pose, highlighting the necessity for exploratory research in the search for binding epitopes and challenging the notion that AI-generated protein structures can be accepted without scrutiny. Our research underscores the potential of employing dynamic network analysis to enhance AI-based structure predictions for more accurate identification of protein–protein interaction interfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
2秒前
木子水告完成签到,获得积分10
4秒前
jane完成签到,获得积分10
8秒前
chujun_cai完成签到 ,获得积分10
9秒前
CipherSage应助eye采纳,获得10
9秒前
YU完成签到 ,获得积分10
17秒前
yu完成签到 ,获得积分10
19秒前
32秒前
从容成危完成签到,获得积分10
34秒前
Able完成签到,获得积分10
44秒前
木有完成签到 ,获得积分10
52秒前
53秒前
1分钟前
TangWL完成签到 ,获得积分10
1分钟前
haly完成签到 ,获得积分10
1分钟前
chenjzhuc完成签到,获得积分10
1分钟前
1分钟前
eye发布了新的文献求助10
1分钟前
cc123完成签到,获得积分10
1分钟前
天黑不打烊完成签到,获得积分10
1分钟前
李健应助早起先喝一碗粥采纳,获得10
1分钟前
猕猴桃猴完成签到,获得积分10
1分钟前
情怀应助袁咏琳冲冲冲采纳,获得10
1分钟前
eye发布了新的文献求助10
1分钟前
香风智乃完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Mtx3098520564完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
深情安青应助迷人问兰采纳,获得30
2分钟前
万能图书馆应助eye采纳,获得10
2分钟前
yangyajie发布了新的文献求助10
2分钟前
jjj完成签到 ,获得积分10
2分钟前
Kaite完成签到,获得积分10
2分钟前
美满的高丽完成签到 ,获得积分10
2分钟前
郭燥发布了新的文献求助10
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965582
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155405
捐赠科研通 3245330
什么是DOI,文献DOI怎么找? 1792840
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176