已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SPORT: A Subgraph Perspective on Graph Classification with Label Noise

透视图(图形) 诱导子图同构问题 图形 计算机科学 噪音(视频) 多标签分类 人工智能 模式识别(心理学) 数学 理论计算机科学 折线图 电压图 图像(数学)
作者
Nan Yin,Li Shen,Chong Chen,Xian‐Sheng Hua,Xiao Luo
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
标识
DOI:10.1145/3687468
摘要

Graph neural networks (GNNs) have achieved great success recently on graph classification tasks using supervised end-to-end training. Unfortunately, extensive noisy graph labels could exist in the real world because of the complicated processes of manual graph data annotations, which may significantly degrade the performance of GNNs. Therefore, we investigate the problem of graph classification with label noise, which is demanding because of the complex graph representation learning issue and serious memorization of noisy samples. In this work, we present a novel approach called S ubgra p h Set Netw or k with Sample Selection and Consis t ency Learning (SPORT) for this problem. To release the overfitting of GNNs, SPORT proposes to characterize each graph as a set of subgraphs generated by certain predefined stratagems, which can be viewed as samples from its underlying semantic distribution in graph space. Then we develop an equivariant network to encode the subgraph set with the consideration of the symmetry group. To further release the influences of noisy examples, we leverage the predictions of subgraphs to measure the likelihood of a sample being clean or noisy, followed by effective label updating. In addition, we propose a joint loss to advance the model generalizability by introducing consistency regularization. Comprehensive experiments on a wide range of graph classification datasets demonstrate the effectiveness of our SPORT. Specifically, SPORT outperforms the most competing baseline by up to 6.4%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
Dr_Stars完成签到,获得积分10
4秒前
勤劳钧完成签到,获得积分10
5秒前
7秒前
好巧发布了新的文献求助30
7秒前
英姑应助samifranco采纳,获得10
7秒前
朴素剑心完成签到,获得积分10
10秒前
10秒前
Jasper应助蓝胖子采纳,获得10
11秒前
Helennewton完成签到,获得积分10
12秒前
kkk发布了新的文献求助10
13秒前
852发布了新的文献求助20
13秒前
bkagyin应助ppppppp_76采纳,获得10
13秒前
tangz7发布了新的文献求助20
14秒前
研友_n0Dmwn发布了新的文献求助10
18秒前
思源应助想学习想得不行采纳,获得10
19秒前
金金金发布了新的文献求助10
20秒前
整齐的达完成签到,获得积分10
22秒前
24秒前
25秒前
小小的梦想完成签到,获得积分10
25秒前
26秒前
卡皮巴拉发布了新的文献求助10
26秒前
路嘻嘻发布了新的文献求助10
29秒前
命运的X号发布了新的文献求助10
31秒前
32秒前
罗浩禹完成签到 ,获得积分10
32秒前
整齐的井完成签到 ,获得积分10
32秒前
希望天下0贩的0应助ning采纳,获得30
34秒前
wdnyrrc发布了新的文献求助10
35秒前
36秒前
youxiu1112完成签到,获得积分10
36秒前
夏昱发布了新的文献求助10
36秒前
wyp大魔王发布了新的文献求助10
38秒前
38秒前
39秒前
赘婿应助Mint采纳,获得10
40秒前
想学习想得不行完成签到 ,获得积分10
40秒前
40秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229401
求助须知:如何正确求助?哪些是违规求助? 2877137
关于积分的说明 8197812
捐赠科研通 2544458
什么是DOI,文献DOI怎么找? 1374396
科研通“疑难数据库(出版商)”最低求助积分说明 646956
邀请新用户注册赠送积分活动 621749