Regional Logistics Express Demand Forecasting Based on Improved GA-BP Neural Network with Indicator Data Characteristics

人工神经网络 需求预测 计算机科学 遗传算法 数据挖掘 运筹学 人工智能 机器学习 工程类
作者
Feihu Ma,S. Wang,Tian Xie,Cuiyu Sun
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (15): 6766-6766
标识
DOI:10.3390/app14156766
摘要

In the current era, the government consistently emphasizes the pursuit of high-quality development, as evidenced by the ongoing increase in the tertiary industry’s GDP share. As a crucial component of the modern service sector, logistics plays a pivotal role in determining the operational efficiency and overall quality of the industrial economy. This study focuses on constructing a Chongqing logistics express demand prediction index system. It employs an improved BP neural network model to forecast the logistics express demand for Chongqing over the next five years. Given the limited express demand data sequence and the normalized characteristics of the data, the selected training method is the Bayesian regularization approach, with the LeCun Tanh function serving as the hidden layer activation function. Additionally, a genetic algorithm is designed to optimize the initial weights and thresholds of the BP neural network, thereby enhancing prediction accuracy and reducing the number of iterations. The experimental results of the improved GA-BP network are analyzed and compared, demonstrating that the improved BP neural network, utilizing GA optimization, can more reliably and accurately predict regional logistics express demand. According to the findings, the forecast indicates that the logistics express demand for Chongqing in 2026 will be 2,171,642,700 items.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿斯蒂和琴酒完成签到 ,获得积分10
1秒前
珂珂发布了新的文献求助10
3秒前
3秒前
迟大猫应助我是站长才怪采纳,获得30
3秒前
4秒前
BaekHyun发布了新的文献求助10
4秒前
背后翠梅发布了新的文献求助30
4秒前
CCR发布了新的文献求助10
4秒前
su发布了新的文献求助10
6秒前
善学以致用应助钰c采纳,获得10
6秒前
Fundamental完成签到,获得积分20
7秒前
通~发布了新的文献求助10
7秒前
Akim应助阿屁屁猪采纳,获得10
7秒前
8秒前
细雨听风发布了新的文献求助10
8秒前
8秒前
英俊的小松鼠完成签到,获得积分10
8秒前
9秒前
11秒前
cc完成签到,获得积分20
11秒前
12秒前
12秒前
背后翠梅完成签到,获得积分10
12秒前
12秒前
涛涛发布了新的文献求助10
12秒前
lan完成签到,获得积分10
12秒前
皮皮完成签到 ,获得积分10
13秒前
ChiDaiOLD完成签到,获得积分10
13秒前
13秒前
情怀应助顺顺采纳,获得10
13秒前
Fundamental发布了新的文献求助10
15秒前
咩咩发布了新的文献求助10
15秒前
kingmin应助金鸡奖采纳,获得10
15秒前
喜悦蚂蚁完成签到,获得积分10
16秒前
赘婿应助拼搏向前采纳,获得10
16秒前
16秒前
16秒前
路十三完成签到 ,获得积分10
17秒前
Lucas应助Sophia采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808