Regional Logistics Express Demand Forecasting Based on Improved GA-BP Neural Network with Indicator Data Characteristics

人工神经网络 需求预测 计算机科学 遗传算法 数据挖掘 运筹学 人工智能 机器学习 工程类
作者
Feihu Ma,S. Wang,Tian Xie,Cuiyu Sun
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (15): 6766-6766
标识
DOI:10.3390/app14156766
摘要

In the current era, the government consistently emphasizes the pursuit of high-quality development, as evidenced by the ongoing increase in the tertiary industry’s GDP share. As a crucial component of the modern service sector, logistics plays a pivotal role in determining the operational efficiency and overall quality of the industrial economy. This study focuses on constructing a Chongqing logistics express demand prediction index system. It employs an improved BP neural network model to forecast the logistics express demand for Chongqing over the next five years. Given the limited express demand data sequence and the normalized characteristics of the data, the selected training method is the Bayesian regularization approach, with the LeCun Tanh function serving as the hidden layer activation function. Additionally, a genetic algorithm is designed to optimize the initial weights and thresholds of the BP neural network, thereby enhancing prediction accuracy and reducing the number of iterations. The experimental results of the improved GA-BP network are analyzed and compared, demonstrating that the improved BP neural network, utilizing GA optimization, can more reliably and accurately predict regional logistics express demand. According to the findings, the forecast indicates that the logistics express demand for Chongqing in 2026 will be 2,171,642,700 items.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拾忆完成签到,获得积分10
刚刚
1秒前
1秒前
桃花源的瓶起子完成签到 ,获得积分10
1秒前
2秒前
大模型应助五五采纳,获得10
3秒前
田様应助小高高采纳,获得10
4秒前
6秒前
邓鹏煊发布了新的文献求助10
6秒前
huangJP完成签到,获得积分20
6秒前
HEIKU应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
Yolo发布了新的文献求助10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
genomed应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
7秒前
不配.应助科研通管家采纳,获得20
7秒前
HXie完成签到,获得积分10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
MAYTALK完成签到,获得积分10
7秒前
香蕉觅云应助科研通管家采纳,获得30
7秒前
7秒前
HEIKU应助科研通管家采纳,获得10
7秒前
可咳咳咳应助科研通管家采纳,获得20
8秒前
8秒前
水瓶鱼完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
GT发布了新的文献求助10
11秒前
山本无山完成签到 ,获得积分10
12秒前
guoguo82发布了新的文献求助10
13秒前
zzz发布了新的文献求助10
13秒前
小丸子完成签到 ,获得积分10
14秒前
Young发布了新的文献求助10
15秒前
念兹在兹发布了新的文献求助10
15秒前
钰幕完成签到,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137155
求助须知:如何正确求助?哪些是违规求助? 2788182
关于积分的说明 7784837
捐赠科研通 2444146
什么是DOI,文献DOI怎么找? 1299822
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011