优先次序
中国
抗生素
环境科学
环境卫生
业务
地理
生物
微生物学
医学
考古
过程管理
作者
Yi Liu,Meng Zhang,Wu Yang,Si Li,Jingrun Hu,Weiling Sun,Jinren Ni
标识
DOI:10.1016/j.jhazmat.2024.135399
摘要
Through a systematic review of literature references from 2007 to 2022, we compiled a comprehensive national dataset comprising over 67,000 records and covering information on 129 antibiotics detected in the surface water and sediments of China's major rivers. Our analysis revealed notably high antibiotic concentrations in the Liaohe and Yellow Rivers. Among the antibiotics examined, sulfonamides, quinolones, and tetracyclines exhibited relatively high median concentrations in river water. Regional distribution analysis highlighted increased antibiotic levels in Shandong and Tianjin compared to other areas. Partial least squares path modeling revealed that animal production and pollution discharge positively influenced antibiotic levels in river water, whereas natural and socioeconomic factors had negative impacts. Based on the ecological risk assessment, we formulated a prioritized national list of antibiotics, with sulfonamides having the largest number of entries, followed by quinolones. Importantly, our analysis revealed a declining trend in antibiotic concentrations and the associated risk levels across China during the study period. This study not only enhances our understanding of antibiotic distribution in China's water systems, but also contributes to the development of a scientifically sound approach for prioritizing antibiotics. Ultimately, these findings will inform targeted antibiotic management and control strategies. ENVIRONMENTAL IMPLICATION: Antibiotics, posing threats to ecosystems and human health, exhibit pseudo-persistence in the environment. we compiled a national dataset of over 67,000 records on antibiotics, our study scrutinized antibiotic distribution in China's major river water and sediment. Through this analysis, we identified key factors influencing distribution patterns and crafted a national priority ranking for antibiotics. These findings deepen our understanding of antibiotic presence and contribute to the development of targeted management strategies aimed at minimizing environmental impact.
科研通智能强力驱动
Strongly Powered by AbleSci AI