分解水
碳化钨
钨
碳化物
材料科学
化学
冶金
催化作用
生物化学
光催化
作者
Umair Sohail,Erum Pervaiz,Rafiq Khosa,Maryum Ali
摘要
Conventional energy resources are diminishing, and environmental pollution is constantly increasing because of the excessive use of fossil fuels to sustain the ever-increasing population and industrialization. This has raised concerns regarding a sustainable future. In the pursuit of addressing sustainability in industrial processes and energy systems, the production of green hydrogen is considered a promising and crucial solution to meet the growing energy demands. Water-splitting is one of the most effective technologies for producing clean and carbon-neutral hydrogen. Water-splitting is a scientifically emerging application, but it is commercially limited due to its economic non-viability. The sluggish kinetics and the high overpotential needed for the water-splitting reactions (HER and OER) have encouraged the scientific community to design electrocatalysts that address the concerns of low activity, efficiency and stability. Designing a hybrid catalyst using metal-organic frameworks (MOFs) with transition metal carbides can be a suitable approach to address the deficiencies of conventional water-splitting catalysts. In this study, we have designed and fabricated an electrocatalyst of tungsten carbide (WC) with two different MOFs (Zr-based and Fe-based) and explored their electrocatalytic activity for hydrogen generation in an alkaline medium. It should be noted that hybrids of tungsten carbide with a zirconia MOF (UiO-66) showed better electrocatalytic activity with low overpotentials of 104 mV (HER) and 152 mV (OER) at a current density of 10 mA cm
科研通智能强力驱动
Strongly Powered by AbleSci AI