作者
Yue Lü,Jinghua Xu,Ying Feng,Jinping Jiang,Chunfa Wu,Yongshan Chen
摘要
The widespread presence of antibiotics in global watershed environments poses a serious threat to public health and ecosystems. It is essential to examine the resistance of microbial communities in watershed environments in response to shifting antibiotic residues. Sediment samples were collected from seven sites across a watershed, encompassing surface sediment (0-10 cm) and bottom sediment (30-40 cm) depths. The aim was to replicate exposure scenarios to different antibiotics (oxytetracycline (OTC) and sulfadiazine (SD)) at varying concentrations (0, 10, and 100 μg/L) in sediment overlying water, within controlled laboratory settings. The study findings revealed significant variations in the microbial community structure of sediments between different treatments, with distinct differences observed in the upper stream and top sediment layers compared to the sediments located downstream and in the bottom layers. After the introduction of antibiotics, a significant decrease in microbial nodes was observed in the genus-level co-occurrence network analysis of the bottom sediment layer, particularly in the OTC treatment groups. In contrast, the downstream region displayed more robust correlations among the top 20 genera than the upstream area. There was no significant variance observed in the expression of Antibiotic resistance genes (ARGs), consisting of tetracycline resistance genes (tetC, tetG, tetM, tetW, and tetX) and sulfonamide resistance genes (sul1, sul2, and sul3), between sediments in the top and bottom layers. Nevertheless, downstream samples exhibited significantly higher levels of ARGs when compared to upstream samples. Network correlation analysis indicated notably lower correlations between ARGs and bacterial genera in sediments from upstream or surface layers compared to those in downstream or deeper layers. Moreover, correlations in the sediments from surface layers and upstream regions showed a decreasing trend with increasing SD exposure concentrations, while those in deeper layers and downstream areas remained relatively stable. The presence of antibiotics notably enhanced the correlation between sediment properties and ARGs, particularly emphasizing associations with total carbon, nitrogen, and sulfur content. However, the introduction of SD and OTC resulted in a decrease in the influence of these sediment factors on microbial community functions related to sulfur and nitrogen metabolism, as indicated by KEGG (Kyoto Encyclopedia of Genes and Genomes) annotation. The research provided empirical evidence on how microbial resistance responds to changes in antibiotics in sediment samples taken from various depths and locations within a watershed. It emphasized the urgent need for heightened awareness of the movement and alteration of antibiotic resistance patterns in watershed ecosystems.