First-Principle Insight of Synergistic Modification Mechanism in P2-Type Layered Oxide Cathode Material with Anionic Redox Activity for Sodium-Ion Batteries

氧化还原 氧化物 离子 表面改性 无机化学 阴极 化学 机制(生物学) 材料科学 有机化学 物理化学 认识论 哲学
作者
Hsu‐Chen Cheng,Han‐Yi Chen,Hsin‐Yi Tiffany Chen
出处
期刊:Meeting abstracts 卷期号:MA2024-01 (45): 2556-2556
标识
DOI:10.1149/ma2024-01452556mtgabs
摘要

Layered oxides exhibiting anionic redox activity have gained attention as a promising material in both Na-ion batteries owing to their additional capacity provided through oxygen redox chemistry. However, unfavorable side effects such as irreversible phase transformation, hysteresis, and gas evolution, usually arise during the stabilization process of the unstable electron holes generated by the redox reaction of oxygen. To address these challenges, we co-dope Cu and Ca in the pristine Na x [Mg 0.28 Mn 0.72 ]O 2 (NMMO) and propose the P2-type Na x Ca 0.03 Mg 0.22 Cu 0.11 Mn 0.67 O 2 (NCaMCMO) Na-deficient cathode material which demonstrates high specific capacity with minimal phase change. In this work, we employed the density functional theory (DFT) calculations to investigate the underlying mechanisms of the synergistic modification strategy in both transition metal and alkali metal layers. The substitution of electrochemically active Cu induced variations in the electronic structure near the Fermi level, indicating an inherent change in redox chemistry. The computational results of the local structure provide a deeper understanding of the oxygen-stabilizing effect of Cu. Furthermore, we analyze the nature of the Ca insertion as a pillar in an alkali-metal layer, which mitigates phase transformation to the kinetically unfavorable O2 phase through phase energy comparison. The calculations manifest that Ca doping effectively extends the P2 phase into a deeper charging state. This work elucidates fundamental mechanisms for enhancing cathode materials in future battery design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助臻灏采纳,获得10
1秒前
XUXU发布了新的文献求助10
1秒前
微凉完成签到 ,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
深情的玉米完成签到 ,获得积分10
3秒前
Jasper应助伍佰采纳,获得10
3秒前
4秒前
4秒前
苹果音响发布了新的文献求助10
5秒前
英吉利25发布了新的文献求助10
5秒前
风中天蓉发布了新的文献求助50
6秒前
羽宇发布了新的文献求助10
7秒前
LL完成签到 ,获得积分10
8秒前
9秒前
9秒前
liuaoo发布了新的文献求助10
9秒前
10秒前
田様应助ernest采纳,获得30
12秒前
12秒前
12秒前
12秒前
橙子abcy完成签到,获得积分10
12秒前
13秒前
卷发麦麦发布了新的文献求助10
13秒前
wanci应助lllcx采纳,获得10
13秒前
kke发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
14秒前
每天都想发文章完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
16秒前
16秒前
16秒前
闪光的flash完成签到 ,获得积分10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5753463
求助须知:如何正确求助?哪些是违规求助? 5481244
关于积分的说明 15378197
捐赠科研通 4892357
什么是DOI,文献DOI怎么找? 2631179
邀请新用户注册赠送积分活动 1579248
关于科研通互助平台的介绍 1535000