Quantum Molecular Docking with a Quantum-Inspired Algorithm

计算机科学 量子 量子退火 量子位元 离散化 模拟退火 量子计算机 二进制数 算法 数学优化 理论计算机科学 物理 数学 量子力学 数学分析 算术
作者
LI Yunting,Xiaopeng Cui,Zhaoping Xiong,Bowen Liu,Bi-Ying Wang,Runqiu Shu,Nan Qiao,Man-Hong Yung
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:20 (15): 6687-6694
标识
DOI:10.1021/acs.jctc.4c00141
摘要

Molecular docking (MD) is a crucial task in drug design, which predicts the position, orientation, and conformation of the ligand when it is bound to a target protein. It can be interpreted as a combinatorial optimization problem, where quantum annealing (QA) has shown a promising advantage for solving combinatorial optimization. In this work, we propose a novel quantum molecular docking (QMD) approach based on a QA-inspired algorithm. We construct two binary encoding methods to efficiently discretize the degrees of freedom with an exponentially reduced number of bits and propose a smoothing filter to rescale the rugged objective function. We propose a new quantum-inspired algorithm, hopscotch simulated bifurcation (hSB), showing great advantages in optimizing over extremely rugged energy landscapes. This hSB can be applied to any formulation of an objective function under binary variables. An adaptive local continuous search is also introduced for further optimization of the discretized solution from hSB. Concerning the stability of docking, we propose a perturbation detection method to help rank the candidate poses. We demonstrate our approach on a typical data set. QMD has shown advantages over the search-based Autodock Vina and the deep-learning DIFFDOCK in both redocking and self-docking scenarios. These results indicate that quantum-inspired algorithms can be applied to solve practical problems in drug discovery even before quantum hardware become mature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sxhlrm发布了新的文献求助10
1秒前
雨柏完成签到 ,获得积分10
3秒前
颜朗完成签到,获得积分10
4秒前
4秒前
Jasper应助ii采纳,获得30
4秒前
wanci应助aaaaaa采纳,获得10
5秒前
迷路的八宝粥完成签到,获得积分10
7秒前
7秒前
li发布了新的文献求助10
10秒前
11秒前
yzw1111111完成签到,获得积分10
13秒前
可靠奇异果完成签到,获得积分10
14秒前
匆匆走过完成签到,获得积分10
17秒前
Sunshine完成签到 ,获得积分10
18秒前
JamesPei应助老叶采纳,获得10
18秒前
FR发布了新的文献求助10
18秒前
18秒前
li完成签到,获得积分10
19秒前
Xee发布了新的文献求助10
22秒前
zitian发布了新的文献求助50
24秒前
25秒前
26秒前
绝对不倒霉的人完成签到 ,获得积分10
29秒前
29秒前
充电宝应助科研通管家采纳,获得10
29秒前
852应助chang采纳,获得10
30秒前
乐乐应助科研通管家采纳,获得10
30秒前
脑洞疼应助科研通管家采纳,获得10
30秒前
小马甲应助科研通管家采纳,获得10
30秒前
YHY应助科研通管家采纳,获得10
30秒前
天天快乐应助科研通管家采纳,获得10
30秒前
充电宝应助科研通管家采纳,获得10
30秒前
香蕉觅云应助科研通管家采纳,获得10
30秒前
Lucas应助科研通管家采纳,获得10
30秒前
姜姜发布了新的文献求助10
30秒前
彭于晏应助科研通管家采纳,获得10
30秒前
隐形曼青应助科研通管家采纳,获得10
30秒前
30秒前
31秒前
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962657
求助须知:如何正确求助?哪些是违规求助? 3508612
关于积分的说明 11142006
捐赠科研通 3241384
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872916
科研通“疑难数据库(出版商)”最低求助积分说明 803517