A deep reinforcement learning-based method for dynamic quality of service aware energy and occupant comfort management in intelligent buildings

强化学习 暖通空调 计算机科学 能源消耗 控制器(灌溉) 楼宇自动化 控制(管理) 能量(信号处理) 实时计算 人工智能 空调 工程类 统计 物理 电气工程 农学 热力学 生物 机械工程 数学
作者
Amirhossein Azimi,Omid Akbari
出处
期刊:e-Prime [Elsevier]
卷期号:9: 100700-100700 被引量:1
标识
DOI:10.1016/j.prime.2024.100700
摘要

Buildings are responsible for 30 % oof the world's energy consumption, about half of which is consumed by Heating, Ventilation, and Air Conditioning (HVAC) systems. Intelligent control of these can significantly reduce global energy consumption. However, these systems are also one the most important means of providing comfort to occupants within buildings. These two control objectives may conflict with each other, which means that reducing the energy consumption of the HVAC systems may lead to dissatisfaction among buildings' occupants. Thus, in most cases, to handle the trade-off, weights are assigned to these objectives which indicate their importance. The priority of these goals may change throughout the operation, meaning that the value of assigned weights must change. To solve this problem, existing methods needed to be retrained every time that the weights changed, which is time-consuming and costly. Thus, an algorithm that can adapt to weight changes in operation time is needed. In this research, a dynamic multi-objective deep reinforcement learning algorithm is introduced to control the power of the HVAC system. Since it is needed to control the continuous power of the HVAC system, a Deep Deterministic Policy Gradient (DDPG) algorithm empowered by Tunable Training, is proposed which can adapt to changes of objectives weights. The controller can adapt to changes in the importance of objectives during operation and does not need to be retrained. The proposed method is compared with a dynamic multi-objective Deep Q-Network (DQN) Algorithm, which is used for discrete control, in a smart home. The results show that the cost of energy in the proposed method is up to 14 % lower than the DML-DQN algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qy完成签到,获得积分10
刚刚
shinen完成签到,获得积分10
刚刚
蒙开心完成签到 ,获得积分10
刚刚
宋昊应助gfhdf采纳,获得20
1秒前
静静在学呢完成签到,获得积分10
1秒前
眼睛大墨镜完成签到,获得积分10
2秒前
Sean完成签到,获得积分10
2秒前
斯文败类应助茶茶采纳,获得10
2秒前
Chem发布了新的文献求助10
2秒前
小酒窝完成签到,获得积分10
3秒前
hui完成签到,获得积分10
3秒前
3秒前
bjcyqz完成签到,获得积分10
3秒前
Jxnx完成签到 ,获得积分20
3秒前
小肚溜圆完成签到,获得积分10
4秒前
4秒前
哆啦A梦的小小王完成签到,获得积分10
4秒前
柳沙鸣完成签到,获得积分20
4秒前
6秒前
壮观梦之发布了新的文献求助10
6秒前
zzw完成签到,获得积分10
6秒前
李蕤蕤完成签到,获得积分10
7秒前
JiegeSCI完成签到,获得积分10
7秒前
Owen应助英俊皮卡丘采纳,获得10
7秒前
今天你读文献了吗完成签到,获得积分10
7秒前
云鹤完成签到 ,获得积分10
8秒前
8秒前
9秒前
英俊的铭应助CXQCXQ采纳,获得10
9秒前
10秒前
Ava应助虚心的鸽子采纳,获得10
10秒前
10秒前
风趣的鸡翅完成签到,获得积分10
11秒前
WUHUIWEN完成签到,获得积分10
11秒前
gugugu完成签到 ,获得积分10
11秒前
布拉布拉完成签到,获得积分10
11秒前
洁净晓夏完成签到 ,获得积分10
11秒前
希望天下0贩的0应助www采纳,获得10
11秒前
轻松蘑菇完成签到,获得积分20
12秒前
Always完成签到 ,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Differential equations with boundary value problems 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3656153
求助须知:如何正确求助?哪些是违规求助? 3218802
关于积分的说明 9726577
捐赠科研通 2927511
什么是DOI,文献DOI怎么找? 1603228
邀请新用户注册赠送积分活动 756009
科研通“疑难数据库(出版商)”最低求助积分说明 733710