Automatic Detection of Sleep Spindles and its Application in Patients with Acute Disorders of Consciousness

睡眠纺锤 脑电图 持续植物状态 睡眠(系统调用) 计算机科学 听力学 医学 意识 最小意识状态 心理学 神经科学 慢波睡眠 操作系统
作者
Zhenglang Yang,Jiahui Pan
标识
DOI:10.1109/bibm58861.2023.10385924
摘要

Sleep spindles play an important role in human sleep and are considered to have great significance in predicting the prognosis of patients with acute disorders of consciousness (ADOC). Although previous studies have achieved high performance in the automatic detection of sleep spindles in normal subjects, the application in ADOC is very limited, and several challenges remain: 1) how to effectively detect patients' spindles that may decrease in frequency; 2) how to improve the generality of the method to detect more electroencephalogram (EEG) events, such as K-complexes; and 3) how to intuitively reflect the relationship between patients' spindle density and prognosis. To address the above challenges, we propose SpindleCatcher, a deep learning strategy to detect sleep spindles, and design an experiment to investigate the correlation between spindle density and prognosis in ADOC. SpindleCatcher jointly predicts the locations and durations of spindles in EEG, using a convolutional neural network to extract features from raw EEG signals and two modules for localization and classification tasks. Specifically, a frequency attention module is applied to better focus on signals in the desired frequency ranges to improve the performance of ADOC spindle detection. SpindleCatcher can also detect other EEG events, such as K-complexes. Experiments demonstrate that the proposed method exceeds the baseline methods on spindle detection with an overall recall of 0.817 and F1 score of 0.794 on the publicly available MASS2 dataset and an overall recall of 0.707 and F1 score of 0.681 on the patient dataset. The correlation experiment shows that there may be a strong positive correlation between the sleep spindle density of ADOCs and their outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柠檬发布了新的文献求助10
1秒前
1秒前
where完成签到,获得积分10
1秒前
rainsy完成签到,获得积分10
1秒前
hazardatom完成签到 ,获得积分10
2秒前
zmy发布了新的文献求助30
2秒前
希望天下0贩的0应助样子采纳,获得10
2秒前
Grayball发布了新的文献求助30
2秒前
qaw发布了新的文献求助10
4秒前
anna1992完成签到,获得积分10
5秒前
风淡了完成签到,获得积分20
5秒前
李健应助Alaskan采纳,获得10
5秒前
WZ0904发布了新的文献求助10
6秒前
8秒前
无花果应助归未采纳,获得10
8秒前
anna1992发布了新的文献求助10
9秒前
情怀应助今天喝咖啡吗采纳,获得10
10秒前
星辰大海应助qaw采纳,获得10
11秒前
11秒前
orixero应助科研人采纳,获得10
12秒前
12秒前
顾矜应助Billy采纳,获得10
13秒前
zhangshenlan完成签到 ,获得积分10
15秒前
Dann完成签到,获得积分10
15秒前
俏皮的匕发布了新的文献求助10
15秒前
WZ0904完成签到,获得积分10
15秒前
15秒前
orixero应助肉肉采纳,获得10
18秒前
香蕉觅云应助柠檬采纳,获得10
18秒前
18秒前
尺八发布了新的文献求助10
18秒前
qaw完成签到,获得积分10
19秒前
niuhulushi完成签到,获得积分20
20秒前
李爱国应助LX-ik采纳,获得10
21秒前
不冰淇淋完成签到,获得积分10
21秒前
wu完成签到,获得积分10
21秒前
哇塞啊发布了新的文献求助30
21秒前
bswxy发布了新的文献求助20
21秒前
脑洞疼应助司空豁采纳,获得10
23秒前
SevenKing发布了新的文献求助10
23秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
The Paleoanthropology of Eastern Asia 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3174377
求助须知:如何正确求助?哪些是违规求助? 2825591
关于积分的说明 7953276
捐赠科研通 2486537
什么是DOI,文献DOI怎么找? 1325288
科研通“疑难数据库(出版商)”最低求助积分说明 634432
版权声明 602734