A bi-level optimization method for regional integrated energy system considering uncertainty and load prediction under climate change

托普西斯 数学优化 冷冻机 不确定度分析 冷负荷 理想溶液 最优化问题 计算机科学 环境科学 工程类 运筹学 数学 模拟 机械工程 物理 空调 热力学
作者
Jingyu Ran,Yang Song,Shiyu Zhou,Kaimin Yang,Jiying Liu,Zhe Tian
出处
期刊:Journal of building engineering [Elsevier]
卷期号:84: 108527-108527 被引量:4
标识
DOI:10.1016/j.jobe.2024.108527
摘要

The global energy shortage problem has become increasingly serious, and regional the integrated energy system (RIES) has become the inevitable choice for energy development. However, climate change and uncertainty bring challenges to the planning of RIES. In order to address this, this study presents a bi-level optimization method for RIES considering uncertainty and load prediction under climate change. First, a method for predicting regional building loads under climate change is proposed and a bi-level optimization model for RIES is then developed. The upper-level model optimizes the capacity configuration of RIES with cost and exergy efficiency as the optimization objectives. The lower-level model optimizes the operation strategy of the system to minimize operating costs. In addition, uncertainty issues in the optimization process are addressed using the interval optimization method. Finally, the optimal solution is determined using the entropy weight - technique for order preference by similarity to an ideal solution (EW-TOPSIS). A case study verified the efficacy of the proposed method. The results reveal that future climate and uncertainty affect the optimization results of RIES. Under climate change, the configured capacity of the waste heat boiler and gas boiler decreased by 18.7% and 13.76%, respectively, while the electric chiller capacity increased by 29.39%. Uncertainty to induce to an increase in the total configured capacity of energy production and conversion equipment. Moreover, interval values for the system operating costs and operating strategies were obtained, which can provide a reference for RIES operation scheduling. The study provides valuable guidance for the capacity configuration and operation optimization of RIES under climate change.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安白秋完成签到 ,获得积分20
1秒前
Yeah完成签到,获得积分10
1秒前
1秒前
HUZI发布了新的文献求助10
1秒前
2秒前
科研通AI2S应助朴素爆米花采纳,获得10
2秒前
酷波er应助piooo采纳,获得10
3秒前
Mint发布了新的文献求助10
3秒前
健康的犀牛完成签到,获得积分10
4秒前
龙卷风发布了新的文献求助10
4秒前
不将就i完成签到,获得积分10
4秒前
4秒前
科研通AI2S应助太叔明辉采纳,获得10
4秒前
Dragon完成签到,获得积分10
5秒前
October完成签到,获得积分10
5秒前
kx完成签到,获得积分10
5秒前
nwpuwangbo完成签到,获得积分10
7秒前
继往开来发布了新的文献求助10
7秒前
不将就i发布了新的文献求助10
7秒前
9秒前
LiZheng完成签到,获得积分10
9秒前
9秒前
ABB完成签到,获得积分10
10秒前
hhhh完成签到,获得积分10
10秒前
10秒前
勤恳易真完成签到,获得积分10
11秒前
科研通AI2S应助keyanli采纳,获得10
11秒前
独角兽完成签到 ,获得积分10
11秒前
我爱科研完成签到,获得积分10
11秒前
SSSstriker完成签到,获得积分10
12秒前
研友_VZG7GZ应助Yanxb采纳,获得10
12秒前
YY发布了新的文献求助10
13秒前
zrx15986完成签到,获得积分10
13秒前
磕盐民工完成签到,获得积分10
13秒前
自由文博完成签到 ,获得积分10
13秒前
14秒前
郭京京完成签到 ,获得积分10
15秒前
aaaaaa完成签到,获得积分10
15秒前
15秒前
syx完成签到,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134153
求助须知:如何正确求助?哪些是违规求助? 2785006
关于积分的说明 7769763
捐赠科研通 2440543
什么是DOI,文献DOI怎么找? 1297440
科研通“疑难数据库(出版商)”最低求助积分说明 624971
版权声明 600792