A bi-level optimization method for regional integrated energy system considering uncertainty and load prediction under climate change

托普西斯 数学优化 冷冻机 不确定度分析 冷负荷 理想溶液 最优化问题 计算机科学 环境科学 工程类 运筹学 数学 模拟 机械工程 物理 空调 热力学
作者
Jingyu Ran,Yang Song,Shiyu Zhou,Kaimin Yang,Jiying Liu,Zhe Tian
出处
期刊:Journal of building engineering [Elsevier]
卷期号:84: 108527-108527 被引量:4
标识
DOI:10.1016/j.jobe.2024.108527
摘要

The global energy shortage problem has become increasingly serious, and regional the integrated energy system (RIES) has become the inevitable choice for energy development. However, climate change and uncertainty bring challenges to the planning of RIES. In order to address this, this study presents a bi-level optimization method for RIES considering uncertainty and load prediction under climate change. First, a method for predicting regional building loads under climate change is proposed and a bi-level optimization model for RIES is then developed. The upper-level model optimizes the capacity configuration of RIES with cost and exergy efficiency as the optimization objectives. The lower-level model optimizes the operation strategy of the system to minimize operating costs. In addition, uncertainty issues in the optimization process are addressed using the interval optimization method. Finally, the optimal solution is determined using the entropy weight - technique for order preference by similarity to an ideal solution (EW-TOPSIS). A case study verified the efficacy of the proposed method. The results reveal that future climate and uncertainty affect the optimization results of RIES. Under climate change, the configured capacity of the waste heat boiler and gas boiler decreased by 18.7% and 13.76%, respectively, while the electric chiller capacity increased by 29.39%. Uncertainty to induce to an increase in the total configured capacity of energy production and conversion equipment. Moreover, interval values for the system operating costs and operating strategies were obtained, which can provide a reference for RIES operation scheduling. The study provides valuable guidance for the capacity configuration and operation optimization of RIES under climate change.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
整齐的白筠完成签到,获得积分10
1秒前
WWWUBING完成签到,获得积分10
2秒前
小文发布了新的文献求助10
2秒前
MJQ发布了新的文献求助10
2秒前
2秒前
春夏秋冬发布了新的文献求助10
3秒前
3秒前
3秒前
李健的小迷弟应助nn采纳,获得10
3秒前
彭于晏应助sunzhiyu233采纳,获得10
4秒前
4秒前
zzznznnn完成签到,获得积分10
4秒前
4秒前
马保国123发布了新的文献求助10
4秒前
4秒前
慕青应助wsljc134采纳,获得10
4秒前
5秒前
世界尽头完成签到,获得积分10
6秒前
6秒前
君与完成签到,获得积分10
6秒前
yili发布了新的文献求助10
6秒前
7秒前
7秒前
科研通AI5应助专注乐巧采纳,获得10
7秒前
自信晟睿发布了新的文献求助10
7秒前
7秒前
8秒前
七里香完成签到 ,获得积分10
8秒前
handsomecat关注了科研通微信公众号
8秒前
细心映寒完成签到 ,获得积分10
8秒前
8秒前
fff完成签到,获得积分10
8秒前
领导范儿应助MJQ采纳,获得100
8秒前
9秒前
Owen应助世界尽头采纳,获得10
9秒前
echolan发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759