Metabolic-Related Gene Prognostic Index for Predicting Prognosis, Immunotherapy Response, and Candidate Drugs in Ovarian Cancer

医学 候选基因 免疫疗法 肿瘤科 人口 疾病 癌症 内科学 生物信息学 基因 生物 环境卫生 生物化学
作者
Shuang Guo,Yuwei Liu,Yue Sun,Hanxiao Zhou,Yue Gao,Peng Wang,Hui Zhi,Yakun Zhang,Jing Gan,Shangwei Ning
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (3): 1066-1080 被引量:7
标识
DOI:10.1021/acs.jcim.3c01473
摘要

Ovarian cancer (OC) is a highly heterogeneous disease, with patients at different tumor staging having different survival times. Metabolic reprogramming is one of the key hallmarks of cancer; however, the significance of metabolism-related genes in the prognosis and therapy outcomes of OC is unclear. In this study, we used weighted gene coexpression network analysis and differential expression analysis to screen for metabolism-related genes associated with tumor staging. We constructed the metabolism-related gene prognostic index (MRGPI), which demonstrated a stable prognostic value across multiple clinical trial end points and multiple validation cohorts. The MRGPI population had its distinct molecular features, mutational characteristics, and immune phenotypes. In addition, we investigated the response to immunotherapy in MRGPI subgroups and found that patients with low MRGPI were prone to benefit from anti-PD-1 checkpoint blockade therapy and exhibited a delayed treatment effect. Meanwhile, we identified four candidate therapeutic drugs (ABT-737, crizotinib, panobinostat, and regorafenib) for patients with high MRGPI, and we evaluated the pharmacokinetics and safety of the candidate drugs. In summary, the MRGPI was a robust clinical feature that could predict patient prognosis, immunotherapy response, and candidate drugs, facilitating clinical decision making and therapeutic strategy of OC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赖林发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
2秒前
一米八完成签到,获得积分10
2秒前
科目三应助是个哑巴采纳,获得10
2秒前
3秒前
syl完成签到,获得积分10
3秒前
Tuniverse_发布了新的文献求助10
3秒前
小池同学发布了新的文献求助10
3秒前
从容雅柏完成签到,获得积分10
3秒前
4秒前
4秒前
xht发布了新的文献求助10
5秒前
摸鱼帝王完成签到,获得积分10
5秒前
5秒前
饱饱完成签到,获得积分10
5秒前
5秒前
zss发布了新的文献求助10
6秒前
6秒前
6秒前
夏召庆发布了新的文献求助10
7秒前
健身哥发布了新的文献求助10
8秒前
9秒前
小池同学完成签到,获得积分10
9秒前
从容雅柏发布了新的文献求助10
9秒前
9秒前
Propitious完成签到 ,获得积分10
10秒前
麻祖完成签到 ,获得积分10
10秒前
千空发布了新的文献求助10
10秒前
小伍完成签到,获得积分10
10秒前
suiyi发布了新的文献求助10
10秒前
Orange应助zlf采纳,获得10
11秒前
szj发布了新的文献求助10
11秒前
陈真完成签到,获得积分10
11秒前
赖林完成签到,获得积分10
11秒前
一个酸葡萄干完成签到,获得积分10
12秒前
逻辑猫完成签到,获得积分10
12秒前
13秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205400
求助须知:如何正确求助?哪些是违规求助? 4384092
关于积分的说明 13652042
捐赠科研通 4242237
什么是DOI,文献DOI怎么找? 2327262
邀请新用户注册赠送积分活动 1325047
关于科研通互助平台的介绍 1277269