The conductivity of Nb2O5 enhanced by the triple effect of fluorine doping, oxygen vacancy, and carbon modification for improving the lithium storage performance

锂(药物) 兴奋剂 阳极 材料科学 电导率 电极 光电子学 物理化学 化学 医学 内分泌学
作者
Yuda Lin,Yiheng Chen,Liting Qiu,Shenghui Zheng
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:160 (9) 被引量:4
标识
DOI:10.1063/5.0193437
摘要

In view of the inherent pseudocapacitance, rich redox pairs (Nb5+/Nb4+ and Nb4+/Nb3+), and high lithiation potential (1.0–3.0 V vs Li/Li+), Nb2O5 is considered a promising anode material. However, the inherent low electronic conductivity of Nb2O5 limits its lithium storage performance, and the rate performance after carbon modification is still unsatisfactory because the intrinsic conductivity of Nb2O5 has not been substantially improved. In this experiment, taking the improvement of the intrinsic electrical conductivity of Nb2O5 as the guiding ideology, we prepared F-doped Nb2O5@fluorocarbon composites (F–Nb2O5@FC) with a large number of oxygen vacancies by one-step annealing. As the anode electrode of lithium-ion batteries, the reversible specific capacity of F–Nb2O5@FC reaches 150 mA g−1 at 5 A g−1 after 1100 cycles, and the rate performance is particularly outstanding, with a capacity up to 130 mA g−1 at 16 A g−1, which is far superior to other Nb2O5@carbon-based anode electrodes. Compared with other single conductivity sources of Nb2O5@carbon-based composites, the electrical conductivity of F–Nb2O5@FC composites is greatly improved in many aspects, including the introduction of free electrons by F− doping, the generation of oxygen vacancies, and the provision of a three-dimensional conductive network by FC. Through analytical chemistry (work function, UV–Vis diffuse reflectance spectroscopy, and EIS) and theoretical calculations, it is proved that F–Nb2O5@FC has high electrical conductivity and realizes rapid electron transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
斩荆披棘发布了新的文献求助10
1秒前
希望天下0贩的0应助errui采纳,获得10
1秒前
2秒前
Jasoncheng发布了新的文献求助10
2秒前
2秒前
LBJ发布了新的文献求助10
3秒前
温暖伟祺发布了新的文献求助10
3秒前
3秒前
5秒前
Liu发布了新的文献求助10
5秒前
阿狸狸狸狸不开完成签到 ,获得积分10
5秒前
ChenXY完成签到,获得积分10
6秒前
没有昵称完成签到 ,获得积分10
6秒前
找文献呢发布了新的文献求助10
6秒前
顾矜应助jia采纳,获得10
7秒前
妮儿发布了新的文献求助10
7秒前
淡定季节发布了新的文献求助10
7秒前
SciGPT应助zhzhzh采纳,获得30
8秒前
8秒前
qiqilu发布了新的文献求助10
8秒前
NexusExplorer应助9047采纳,获得10
9秒前
luxi0714发布了新的文献求助10
9秒前
9秒前
浮游应助hu采纳,获得10
10秒前
10秒前
oRANGE完成签到,获得积分10
10秒前
11秒前
Lucas应助俏皮的松鼠采纳,获得10
11秒前
我是老大应助wzw采纳,获得10
11秒前
传奇3应助俏皮的松鼠采纳,获得10
11秒前
13秒前
13秒前
errui发布了新的文献求助10
13秒前
妖娆发布了新的文献求助10
13秒前
好事成双完成签到,获得积分10
14秒前
秋月明完成签到,获得积分10
14秒前
mirrovo发布了新的文献求助20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648842
求助须知:如何正确求助?哪些是违规求助? 4776854
关于积分的说明 15045836
捐赠科研通 4807704
什么是DOI,文献DOI怎么找? 2571046
邀请新用户注册赠送积分活动 1527707
关于科研通互助平台的介绍 1486624