亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent robotic sonographer: Mutual information-based disentangled reward learning from few demonstrations

计算机科学 人工智能 超声学家 过程(计算) 计算机视觉 机器学习 超声波 物理 声学 操作系统
作者
Zhongliang Jiang,Yuan Bi,Mingchuan Zhou,Ying Hu,Michael Burke,Nassir Navab
出处
期刊:The International Journal of Robotics Research [SAGE]
卷期号:43 (7): 981-1002 被引量:4
标识
DOI:10.1177/02783649231223547
摘要

Ultrasound (US) imaging is widely used for biometric measurement and diagnosis of internal organs due to the advantages of being real-time and radiation-free. However, due to inter-operator variations, resulting images highly depend on the experience of sonographers. This work proposes an intelligent robotic sonographer to autonomously “explore” target anatomies and navigate a US probe to standard planes by learning from the expert. The underlying high-level physiological knowledge from experts is inferred by a neural reward function, using a ranked pairwise image comparison approach in a self-supervised fashion. This process can be referred to as understanding the “language of sonography.” Considering the generalization capability to overcome inter-patient variations, mutual information is estimated by a network to explicitly disentangle the task-related and domain features in latent space. The robotic localization is carried out in coarse-to-fine mode based on the predicted reward associated with B-mode images. To validate the effectiveness of the proposed reward inference network, representative experiments were performed on vascular phantoms (“line” target), two types of ex vivo animal organ phantoms (chicken heart and lamb kidney representing “point” target), and in vivo human carotids. To further validate the performance of the autonomous acquisition framework, physical robotic acquisitions were performed on three phantoms (vascular, chicken heart, and lamb kidney). The results demonstrated that the proposed advanced framework can robustly work on a variety of seen and unseen phantoms as well as in vivo human carotid data. Code: https://github.com/yuan-12138/MI-GPSR . Video: https://youtu.be/u4ThAA9onE0 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tly发布了新的文献求助30
7秒前
10秒前
Ain发布了新的文献求助10
15秒前
所所应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
18秒前
大模型应助科研通管家采纳,获得10
18秒前
兴奋的若菱完成签到 ,获得积分10
26秒前
打打应助ruiii采纳,获得10
29秒前
41秒前
ruiii发布了新的文献求助10
47秒前
桐桐应助aiyowei采纳,获得10
52秒前
1分钟前
ruiii完成签到,获得积分20
1分钟前
aiyowei发布了新的文献求助10
1分钟前
土大弓虽完成签到 ,获得积分10
1分钟前
oncoma完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
zed66发布了新的文献求助100
1分钟前
寒冷的荧发布了新的文献求助10
1分钟前
云飞扬完成签到 ,获得积分10
1分钟前
1分钟前
乐乐应助寒冷的荧采纳,获得10
1分钟前
nuomi发布了新的文献求助10
1分钟前
打打应助nuomi采纳,获得10
1分钟前
2分钟前
儿科发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得20
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
野性的柠檬完成签到,获得积分10
2分钟前
Ain发布了新的文献求助10
2分钟前
言非离完成签到 ,获得积分10
2分钟前
爱科研的萌新完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
Effect of reactor temperature on FCC yield 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
The Healthy Socialist Life in Maoist China 600
Production Logging: Theoretical and Interpretive Elements 555
Mesopotamian Divination Texts: Conversing with the Gods 500
The AASM International Classification of Sleep Disorders – Third Edition, Text Revision (ICSD-3-TR) 490
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3280224
求助须知:如何正确求助?哪些是违规求助? 2918459
关于积分的说明 8390223
捐赠科研通 2589550
什么是DOI,文献DOI怎么找? 1410894
科研通“疑难数据库(出版商)”最低求助积分说明 657856
邀请新用户注册赠送积分活动 639099