Fine-Tuning Intrinsic and Doped Hydrogenated Amorphous Silicon Thin-Film Anodes Deposited by PECVD to Enhance Capacity and Stability in Lithium-Ion Batteries

材料科学 阳极 锂(药物) 兴奋剂 无定形固体 薄膜 非晶硅 石墨 电池(电) 纳米技术 化学工程 光电子学 电极 复合材料 晶体硅 化学 有机化学 物理 工程类 内分泌学 物理化学 功率(物理) 医学 量子力学
作者
Nieves González,Tomás García,Carmen Morant,R. Barrio
出处
期刊:Nanomaterials [MDPI AG]
卷期号:14 (2): 204-204 被引量:2
标识
DOI:10.3390/nano14020204
摘要

Silicon is a promising alternative to graphite as an anode material in lithium-ion batteries, thanks to its high theoretical lithium storage capacity. Despite these high expectations, silicon anodes still face significant challenges, such as premature battery failure caused by huge volume changes during charge–discharge processes. To solve this drawback, using amorphous silicon as a thin film offers several advantages: its amorphous nature allows for better stress mitigation and it can be directly grown on current collectors for material savings and improved Li-ion diffusion. Furthermore, its conductivity is easily increased through doping during its growth. In this work, we focused on a comprehensive study of the influence of both electrical and structural properties of intrinsic and doped hydrogenated amorphous silicon (aSi:H) thin-film anodes on the specific capacity and stability of lithium-ion batteries. This study allows us to establish that hydrogen distribution in the aSi:H material plays a pivotal role in enhancing battery capacity and longevity, possibly masking the significance of the conductivity in the case of doped electrodes. Our findings show that we were able to achieve high initial specific capacities (3070 mAhg-1 at the 10th cycle), which can be retained at values higher than those of graphite for a significant number of cycles (>120 cycles), depending on the structural properties of the aSi:H films. To our knowledge, this is the first comprehensive study of the influence of these properties of thin films with different doping levels and hydrogen distributions on their optimization and use as anodes in lithium-ion batteries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞流直下发布了新的文献求助10
刚刚
lll发布了新的文献求助10
2秒前
卷卷516发布了新的文献求助10
3秒前
无花果应助..RH采纳,获得10
4秒前
paws完成签到,获得积分10
5秒前
8秒前
彭于彦祖应助学术屎壳郎采纳,获得30
8秒前
酷波er应助鳗鱼涵梅采纳,获得10
9秒前
斯文败类应助zhaochuangchuang采纳,获得30
10秒前
夏睿阳完成签到,获得积分10
11秒前
kilion完成签到,获得积分10
12秒前
诗酒趁年华完成签到,获得积分10
12秒前
13秒前
xiangrikui举报小海豚求助涉嫌违规
15秒前
孤独秋翠完成签到,获得积分10
16秒前
16秒前
大胆砖头完成签到 ,获得积分10
17秒前
整形月光刀完成签到 ,获得积分10
17秒前
清灬发布了新的文献求助10
19秒前
请叫我鬼才完成签到,获得积分10
19秒前
小明发布了新的文献求助10
19秒前
一叶知秋发布了新的文献求助10
21秒前
飞云完成签到,获得积分10
21秒前
22秒前
zwh完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
24秒前
Jasper应助lll采纳,获得10
24秒前
传奇3应助know采纳,获得10
26秒前
赘婿应助小明采纳,获得10
27秒前
前前前世发布了新的文献求助20
27秒前
gwd发布了新的文献求助10
27秒前
yu发布了新的文献求助10
28秒前
Yeats发布了新的文献求助10
28秒前
安详中蓝完成签到 ,获得积分10
29秒前
小马甲应助yang采纳,获得10
30秒前
30秒前
30秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462918
求助须知:如何正确求助?哪些是违规求助? 3056419
关于积分的说明 9052032
捐赠科研通 2746128
什么是DOI,文献DOI怎么找? 1506822
科研通“疑难数据库(出版商)”最低求助积分说明 696204
邀请新用户注册赠送积分活动 695747