Diagnosis-Guided Deep Subspace Clustering Association Study for Pathogenetic Markers Identification of Alzheimer's Disease Based on Comparative Atlases

聚类分析 人工智能 影像遗传学 计算机科学 神经影像学 成对比较 模式识别(心理学) 人类连接体项目 计算生物学 机器学习 生物 神经科学 功能连接
作者
Cui-Na Jiao,Junliang Shang,Feng Li,Xinchun Cui,Yanli Wang,Ying-Lian Gao,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 3029-3041
标识
DOI:10.1109/jbhi.2024.3372294
摘要

The roles of brain region activities and genotypic functions in the pathogenesis of Alzheimer's disease (AD) remain unclear. Meanwhile, current imaging genetics methods are difficult to identify potential pathogenetic markers by correlation analysis between brain network and genetic variation. To discover disease-related brain connectome from the specific brain structure and the fine-grained level, based on the Automated Anatomical Labeling (AAL) and human Brainnetome atlases, the functional brain network is first constructed for each subject. Specifically, the upper triangle elements of the functional connectivity matrix are extracted as connectivity features. The clustering coefficient and the average weighted node degree are developed to assess the significance of every brain area. Since the constructed brain network and genetic data are characterized by non-linearity, high-dimensionality, and few subjects, the deep subspace clustering algorithm is proposed to reconstruct the original data. Our multilayer neural network helps capture the non-linear manifolds, and subspace clustering learns pairwise affinities between samples. Moreover, most approaches in neuroimaging genetics are unsupervised learning, neglecting the diagnostic information related to diseases. We presented a label constraint with diagnostic status to instruct the imaging genetics correlation analysis. To this end, a diagnosis-guided deep subspace clustering association (DDSCA) method is developed to discover brain connectome and risk genetic factors by integrating genotypes with functional network phenotypes. Extensive experiments prove that DDSCA achieves superior performance to most association methods and effectively selects disease-relevant genetic markers and brain connectome at the coarse-grained and fine-grained levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ava应助何糖采纳,获得10
1秒前
桐桐应助美丽的芷烟采纳,获得10
1秒前
野子完成签到,获得积分10
2秒前
情怀应助小D采纳,获得30
3秒前
yuan发布了新的文献求助10
3秒前
berry发布了新的文献求助10
4秒前
4秒前
淡淡采白发布了新的文献求助10
5秒前
思源应助勤恳慕蕊采纳,获得10
5秒前
知犯何逆完成签到 ,获得积分10
6秒前
啊哈完成签到,获得积分10
6秒前
7秒前
7秒前
Draven完成签到 ,获得积分10
7秒前
tmpstlml发布了新的文献求助10
8秒前
张红梨完成签到,获得积分10
8秒前
迷迷完成签到,获得积分20
9秒前
9秒前
科研通AI2S应助chen采纳,获得10
10秒前
穿山甲坐飞机完成签到 ,获得积分10
10秒前
11秒前
美丽的芷烟给美丽的芷烟的求助进行了留言
11秒前
科研通AI5应助经年采纳,获得10
11秒前
11秒前
勤劳晓亦应助木头人采纳,获得10
12秒前
科研通AI5应助想瘦的海豹采纳,获得10
12秒前
13秒前
科研通AI5应助adazbd采纳,获得10
13秒前
bkagyin应助皮皮桂采纳,获得10
13秒前
14秒前
重要的哈密瓜完成签到 ,获得积分10
14秒前
会飞的云完成签到 ,获得积分10
15秒前
15秒前
毕不了业的凡阿哥完成签到,获得积分10
15秒前
野子发布了新的文献求助10
15秒前
berry完成签到,获得积分10
16秒前
17秒前
LUNWENREQUEST发布了新的文献求助10
17秒前
大模型应助匹诺曹采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808