Diagnosis-Guided Deep Subspace Clustering Association Study for Pathogenetic Markers Identification of Alzheimer's Disease Based on Comparative Atlases

聚类分析 人工智能 影像遗传学 计算机科学 神经影像学 成对比较 模式识别(心理学) 人类连接体项目 计算生物学 机器学习 生物 神经科学 功能连接
作者
Cui-Na Jiao,Junliang Shang,Feng Li,Xinchun Cui,Yanli Wang,Ying-Lian Gao,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 3029-3041 被引量:1
标识
DOI:10.1109/jbhi.2024.3372294
摘要

The roles of brain region activities and genotypic functions in the pathogenesis of Alzheimer's disease (AD) remain unclear. Meanwhile, current imaging genetics methods are difficult to identify potential pathogenetic markers by correlation analysis between brain network and genetic variation. To discover disease-related brain connectome from the specific brain structure and the fine-grained level, based on the Automated Anatomical Labeling (AAL) and human Brainnetome atlases, the functional brain network is first constructed for each subject. Specifically, the upper triangle elements of the functional connectivity matrix are extracted as connectivity features. The clustering coefficient and the average weighted node degree are developed to assess the significance of every brain area. Since the constructed brain network and genetic data are characterized by non-linearity, high-dimensionality, and few subjects, the deep subspace clustering algorithm is proposed to reconstruct the original data. Our multilayer neural network helps capture the non-linear manifolds, and subspace clustering learns pairwise affinities between samples. Moreover, most approaches in neuroimaging genetics are unsupervised learning, neglecting the diagnostic information related to diseases. We presented a label constraint with diagnostic status to instruct the imaging genetics correlation analysis. To this end, a diagnosis-guided deep subspace clustering association (DDSCA) method is developed to discover brain connectome and risk genetic factors by integrating genotypes with functional network phenotypes. Extensive experiments prove that DDSCA achieves superior performance to most association methods and effectively selects disease-relevant genetic markers and brain connectome at the coarse-grained and fine-grained levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七日春信发布了新的文献求助10
1秒前
吴子宇发布了新的文献求助10
2秒前
journey完成签到 ,获得积分10
4秒前
7秒前
乖猫要努力应助潇湘雪月采纳,获得10
10秒前
一行发布了新的文献求助10
10秒前
storm完成签到,获得积分10
13秒前
HOPE完成签到,获得积分20
14秒前
Singularity应助Xiaoyang采纳,获得10
16秒前
ding应助快乐一江采纳,获得10
16秒前
17秒前
步一完成签到,获得积分10
18秒前
21秒前
情怀应助科研通管家采纳,获得10
21秒前
SYLH应助科研通管家采纳,获得10
21秒前
SYLH应助科研通管家采纳,获得10
22秒前
烟花应助科研通管家采纳,获得10
22秒前
在水一方应助科研通管家采纳,获得10
22秒前
dongjy应助科研通管家采纳,获得150
22秒前
Owen应助科研通管家采纳,获得10
22秒前
fd163c应助科研通管家采纳,获得10
22秒前
大模型应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
Owen应助科研通管家采纳,获得10
22秒前
22秒前
愉快的牛氓完成签到 ,获得积分10
24秒前
恋雅颖月应助潇湘雪月采纳,获得10
26秒前
28秒前
传奇3应助热情青亦采纳,获得10
29秒前
CodeCraft应助夕沫采纳,获得10
30秒前
江江发布了新的文献求助10
33秒前
斯文败类应助sirhai采纳,获得10
35秒前
只谈风月完成签到,获得积分10
36秒前
顾矜应助哈哈呵采纳,获得10
37秒前
科研助手6应助风中的南风采纳,获得10
37秒前
小马甲应助呆瓜采纳,获得10
37秒前
38秒前
热情青亦完成签到,获得积分10
38秒前
38秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174