Diagnosis-Guided Deep Subspace Clustering Association Study for Pathogenetic Markers Identification of Alzheimer's Disease Based on Comparative Atlases

聚类分析 人工智能 影像遗传学 计算机科学 神经影像学 成对比较 模式识别(心理学) 人类连接体项目 计算生物学 机器学习 生物 神经科学 功能连接
作者
Cui-Na Jiao,Junliang Shang,Feng Li,Xinchun Cui,Yanli Wang,Ying-Lian Gao,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 3029-3041 被引量:1
标识
DOI:10.1109/jbhi.2024.3372294
摘要

The roles of brain region activities and genotypic functions in the pathogenesis of Alzheimer's disease (AD) remain unclear. Meanwhile, current imaging genetics methods are difficult to identify potential pathogenetic markers by correlation analysis between brain network and genetic variation. To discover disease-related brain connectome from the specific brain structure and the fine-grained level, based on the Automated Anatomical Labeling (AAL) and human Brainnetome atlases, the functional brain network is first constructed for each subject. Specifically, the upper triangle elements of the functional connectivity matrix are extracted as connectivity features. The clustering coefficient and the average weighted node degree are developed to assess the significance of every brain area. Since the constructed brain network and genetic data are characterized by non-linearity, high-dimensionality, and few subjects, the deep subspace clustering algorithm is proposed to reconstruct the original data. Our multilayer neural network helps capture the non-linear manifolds, and subspace clustering learns pairwise affinities between samples. Moreover, most approaches in neuroimaging genetics are unsupervised learning, neglecting the diagnostic information related to diseases. We presented a label constraint with diagnostic status to instruct the imaging genetics correlation analysis. To this end, a diagnosis-guided deep subspace clustering association (DDSCA) method is developed to discover brain connectome and risk genetic factors by integrating genotypes with functional network phenotypes. Extensive experiments prove that DDSCA achieves superior performance to most association methods and effectively selects disease-relevant genetic markers and brain connectome at the coarse-grained and fine-grained levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hina完成签到,获得积分10
刚刚
ZH完成签到,获得积分10
3秒前
yyds完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
唯梦完成签到 ,获得积分10
7秒前
詹姆斯哈登完成签到,获得积分10
10秒前
李健应助名字不好起采纳,获得10
12秒前
万历完成签到,获得积分10
12秒前
12秒前
林卷卷完成签到,获得积分10
13秒前
大葱鸭发布了新的文献求助10
15秒前
16秒前
李健应助南山无梅落采纳,获得10
16秒前
20秒前
赘婿应助大橙子采纳,获得10
22秒前
29秒前
我是大学霸完成签到,获得积分10
30秒前
随风完成签到,获得积分0
30秒前
yi完成签到 ,获得积分10
31秒前
lin完成签到,获得积分10
32秒前
huahua完成签到 ,获得积分10
32秒前
大橙子发布了新的文献求助10
35秒前
小黑完成签到,获得积分10
38秒前
ZY完成签到 ,获得积分10
41秒前
阿士大夫完成签到,获得积分0
41秒前
chai完成签到,获得积分10
41秒前
GUO完成签到,获得积分10
42秒前
111完成签到 ,获得积分10
43秒前
Llllll发布了新的文献求助200
44秒前
天下无马完成签到 ,获得积分10
45秒前
大葱鸭完成签到,获得积分10
45秒前
ahh完成签到 ,获得积分10
47秒前
辛勤安梦完成签到,获得积分10
48秒前
Akjan完成签到,获得积分10
51秒前
查查make完成签到,获得积分10
55秒前
Jasper应助大橙子采纳,获得10
56秒前
GUO发布了新的文献求助30
57秒前
三石完成签到 ,获得积分10
57秒前
跳跃的白云完成签到 ,获得积分10
58秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022