Diagnosis-Guided Deep Subspace Clustering Association Study for Pathogenetic Markers Identification of Alzheimer's Disease Based on Comparative Atlases

聚类分析 人工智能 影像遗传学 计算机科学 神经影像学 成对比较 模式识别(心理学) 人类连接体项目 计算生物学 机器学习 生物 神经科学 功能连接
作者
Cui-Na Jiao,Junliang Shang,Feng Li,Xinchun Cui,Yanli Wang,Ying-Lian Gao,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 3029-3041
标识
DOI:10.1109/jbhi.2024.3372294
摘要

The roles of brain region activities and genotypic functions in the pathogenesis of Alzheimer's disease (AD) remain unclear. Meanwhile, current imaging genetics methods are difficult to identify potential pathogenetic markers by correlation analysis between brain network and genetic variation. To discover disease-related brain connectome from the specific brain structure and the fine-grained level, based on the Automated Anatomical Labeling (AAL) and human Brainnetome atlases, the functional brain network is first constructed for each subject. Specifically, the upper triangle elements of the functional connectivity matrix are extracted as connectivity features. The clustering coefficient and the average weighted node degree are developed to assess the significance of every brain area. Since the constructed brain network and genetic data are characterized by non-linearity, high-dimensionality, and few subjects, the deep subspace clustering algorithm is proposed to reconstruct the original data. Our multilayer neural network helps capture the non-linear manifolds, and subspace clustering learns pairwise affinities between samples. Moreover, most approaches in neuroimaging genetics are unsupervised learning, neglecting the diagnostic information related to diseases. We presented a label constraint with diagnostic status to instruct the imaging genetics correlation analysis. To this end, a diagnosis-guided deep subspace clustering association (DDSCA) method is developed to discover brain connectome and risk genetic factors by integrating genotypes with functional network phenotypes. Extensive experiments prove that DDSCA achieves superior performance to most association methods and effectively selects disease-relevant genetic markers and brain connectome at the coarse-grained and fine-grained levels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助小瓶子采纳,获得10
刚刚
1秒前
1秒前
1秒前
小二郎应助留下就好采纳,获得10
2秒前
2秒前
quhayley应助rgaerva采纳,获得10
2秒前
CWNU_HAN应助rgaerva采纳,获得30
2秒前
果果完成签到,获得积分10
3秒前
3秒前
3秒前
感动羊青发布了新的文献求助10
3秒前
3秒前
4秒前
夜空发布了新的文献求助10
4秒前
4秒前
Ferry发布了新的文献求助10
5秒前
5秒前
5秒前
鳗鱼谷丝完成签到 ,获得积分10
6秒前
超级蛙咔完成签到,获得积分10
7秒前
7秒前
琉璃完成签到,获得积分20
7秒前
7秒前
7秒前
快乐帽子完成签到,获得积分10
7秒前
哭泣老三发布了新的文献求助10
7秒前
gyl发布了新的文献求助10
8秒前
caltrate515发布了新的文献求助10
8秒前
hadern发布了新的文献求助10
9秒前
9秒前
sisii完成签到,获得积分10
9秒前
lingling发布了新的文献求助10
9秒前
9秒前
yatou5651完成签到,获得积分10
9秒前
科目三应助欢呼青柏采纳,获得30
10秒前
幸福面包完成签到,获得积分10
10秒前
生活不是电影完成签到,获得积分10
10秒前
11秒前
汉堡包应助现实的从蓉采纳,获得10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148931
求助须知:如何正确求助?哪些是违规求助? 2799908
关于积分的说明 7837731
捐赠科研通 2457479
什么是DOI,文献DOI怎么找? 1307870
科研通“疑难数据库(出版商)”最低求助积分说明 628312
版权声明 601685