有机太阳能电池
平面的
材料科学
接受者
图层(电子)
聚合物太阳能电池
异质结
能量转换效率
聚合物
光电子学
涂层
纳米技术
复合材料
计算机科学
计算机图形学(图像)
物理
凝聚态物理
作者
Lin Zhang,Yuxin He,Wen Deng,Xueliang Guo,Zhaozhao Bi,Jie Zeng,Hui Huang,Guangye Zhang,Chen Xie,Yong Zhang,Xiaotian Hu,Wei Ma,Yongbo Yuan,Xiaoming Yuan
标识
DOI:10.1186/s11671-024-03982-1
摘要
Abstract Organic solar cells (OSCs) are considered as a crucial energy source for flexible and wearable electronics. Pseudo-planar heterojunction (PPHJ) OSCs simplify the solution preparation and morphology control. However, non-halogenated solvent-printed PPHJ often have an undesirable vertical component distribution and insufficient donor/acceptor interfaces. Additionally, the inherent brittleness of non-fullerene small molecule acceptors (NFSMAs) in PPHJ leads to poor flexibility, and the NFSMAs solution shows inadequate viscosity during the printing of acceptor layer. Herein, we propose a novel approach termed polymer-incorporated pseudo-planar heterojunction (PiPPHJ), wherein a small amount of polymer donor is introduced into the NFSMAs layer. Our findings demonstrate that the incorporation of polymer increases the viscosity of acceptor solution, thereby improving the blade-coating processability and overall film quality. Simultaneously, this strategy effectively modulates the vertical component distribution, resulting in more donor/acceptor interfaces and an improved power conversion efficiency of 17.26%. Furthermore, PiPPHJ-based films exhibit superior tensile properties, with a crack onset strain of 12.0%, surpassing PPHJ-based films (9.6%). Consequently, large-area (1 cm 2 ) flexible devices achieve a considerable efficiency of 13.30% and maintain excellent mechanical flexibility with 82% of the initial efficiency after 1000 bending cycles. These findings underscore the significant potential of PiPPHJ-based OSCs in flexible and wearable electronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI