基因敲除
生物
癌症研究
表观遗传学
转录因子
细胞生物学
癌变
化学
生物化学
基因
作者
Yanfei Sun,Guangjing Mu,Xuehai Zhang,Yibo Wu,Shuai Wang,Xu Wang,Zhiwei Xue,Xuping Wang,Ji‐Long Liu,Wenbo Li,Lin Zhang,Yunyun Guo,Feihu Zhao,Xuemeng Liu,Zhiyi Xue,Yan Zhang,Shilei Ni,Jian Wang,Xingang Li,Mingzhi Han,Bin Huang
出处
期刊:Neuro-oncology
[Oxford University Press]
日期:2023-12-07
卷期号:26 (4): 653-669
被引量:1
标识
DOI:10.1093/neuonc/noad232
摘要
Abstract Background Altered branched-chain amino acid (BCAA) metabolism modulates epigenetic modification, such as H3K27ac in cancer, thus providing a link between metabolic reprogramming and epigenetic change, which are prominent hallmarks of glioblastoma multiforme (GBM). Here, we identified mitochondrial 3-hydroxymethyl-3-methylglutaryl-CoA lyase (HMGCL), an enzyme involved in leucine degradation, promoting GBM progression and glioma stem cell (GSC) maintenance. Methods In silico analysis was performed to identify specific molecules involved in multiple processes. Glioblastoma multiforme cells were infected with knockdown/overexpression lentiviral constructs of HMGCL to assess malignant performance in vitro and in an orthotopic xenograft model. RNA sequencing was used to identify potential downstream molecular targets. Results HMGCL, as a gene, increased in GBM and was associated with poor survival in patients. Knockdown of HMGCL suppressed proliferation and invasion in vitro and in vivo. Acetyl-CoA was decreased with HMGCL knockdown, which led to reduced NFAT1 nuclear accumulation and H3K27ac level. RNA sequencing-based transcriptomic profiling revealed FOXM1 as a candidate downstream target, and HMGCL-mediated H3K27ac modification in the FOXM1 promoter induced transcription of the gene. Loss of FOXM1 protein with HMGCL knockdown led to decreased nuclear translocation and thus activity of β-catenin, a known oncogene. Finally, JIB-04, a small molecule confirmed to bind to HMGCL, suppressed GBM tumorigenesis in vitro and in vivo. Conclusions Changes in acetyl-CoA levels induced by HMGCL altered H3K27ac modification, which triggers transcription of FOXM1 and β-catenin nuclear translocation. Targeting HMGCL by JIB-04 inhibited tumor growth, indicating that mediators of BCAA metabolism may serve as molecular targets for effective GBM treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI