Delta-Radiomics Based on Dynamic Contrast-Enhanced MRI for Predicting Lymphovascular Invasion in Invasive Breast Cancer

无线电技术 列线图 淋巴血管侵犯 接收机工作特性 医学 逻辑回归 磁共振成像 动态对比度 乳腺癌 放射科 癌症 肿瘤科 内科学 转移
作者
Hong Zheng,Lian Jian,Li Li,Wen Liu,Wei Chen
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (5): 1762-1772 被引量:9
标识
DOI:10.1016/j.acra.2023.11.017
摘要

Rationale and Objectives Treatment strategies for invasive breast cancer require accurate lymphovascular invasion (LVI) predictions. This study aimed to investigate the effectiveness of delta radiomics based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for assessing LVI and develop a nomogram to aid treatment decisions. Materials and Methods Overall, 293 patients with resectable invasive breast cancer underwent preoperative DCE-MRI. Radiomic features were extracted from pre-contrast (A0), first post-contrast (A1), and subtracted images of A0 and A1. Three radiomics models were developed using several data analyses; logistic analyses were performed to identify radiological features to predict the LVI status. A hybrid model integrating both radiological features and optimal radiomics was developed. Receiver operating characteristic analysis was employed to evaluate model performance, using the area under the curve (AUC) as a quantitative metric for discriminative ability. Results In the test set, the Radiomics-Delta model, with 17 radiomic features, had an AUC of 0.781 and accuracy of 0.705. Radiomics-A0, with 10 features, had an AUC of 0.619 and accuracy of 0.523, while Radiomics-A1, with 8 features, had an AUC of 0.715 and accuracy of 0.591. The hybrid model exhibited better performance, with an AUC of 0.868 and accuracy of 0.875, than the radiological and Radiomics-Delta models, with an AUC of 0.759 and 0.781, respectively, and accuracy of 0.773 and 0.705, respectively. Conclusion Compared to Radiomics-A0 and Radiomics-A1, Radiomics-Delta demonstrated superior performance. Moreover, the hybrid model incorporating Radiomics-Delta and radiological features exhibited excellent performance in determining the LVI status in cases of invasive breast cancer. Treatment strategies for invasive breast cancer require accurate lymphovascular invasion (LVI) predictions. This study aimed to investigate the effectiveness of delta radiomics based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for assessing LVI and develop a nomogram to aid treatment decisions. Overall, 293 patients with resectable invasive breast cancer underwent preoperative DCE-MRI. Radiomic features were extracted from pre-contrast (A0), first post-contrast (A1), and subtracted images of A0 and A1. Three radiomics models were developed using several data analyses; logistic analyses were performed to identify radiological features to predict the LVI status. A hybrid model integrating both radiological features and optimal radiomics was developed. Receiver operating characteristic analysis was employed to evaluate model performance, using the area under the curve (AUC) as a quantitative metric for discriminative ability. In the test set, the Radiomics-Delta model, with 17 radiomic features, had an AUC of 0.781 and accuracy of 0.705. Radiomics-A0, with 10 features, had an AUC of 0.619 and accuracy of 0.523, while Radiomics-A1, with 8 features, had an AUC of 0.715 and accuracy of 0.591. The hybrid model exhibited better performance, with an AUC of 0.868 and accuracy of 0.875, than the radiological and Radiomics-Delta models, with an AUC of 0.759 and 0.781, respectively, and accuracy of 0.773 and 0.705, respectively. Compared to Radiomics-A0 and Radiomics-A1, Radiomics-Delta demonstrated superior performance. Moreover, the hybrid model incorporating Radiomics-Delta and radiological features exhibited excellent performance in determining the LVI status in cases of invasive breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuxunxun2015发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
长白雪茫茫完成签到,获得积分10
刚刚
小点点完成签到 ,获得积分10
1秒前
高玉峰发布了新的文献求助10
1秒前
爆米花应助宠仙采纳,获得10
1秒前
刻苦向梦发布了新的文献求助10
2秒前
lxmccc发布了新的文献求助10
2秒前
yyl完成签到 ,获得积分10
2秒前
小马甲应助爱笑的煎饼采纳,获得10
3秒前
3秒前
酷波er应助欢呼冷亦采纳,获得10
4秒前
研友_Z63G18完成签到 ,获得积分10
4秒前
玉米之路发布了新的文献求助10
4秒前
zhy完成签到,获得积分20
5秒前
6秒前
完美世界应助星星蘸大酱采纳,获得10
6秒前
Peng完成签到,获得积分10
6秒前
求助人员应助ali采纳,获得30
6秒前
李健的粉丝团团长应助GTY采纳,获得10
6秒前
6秒前
搞怪慕凝完成签到,获得积分10
6秒前
6秒前
爆米花应助mimosal采纳,获得10
7秒前
orixero应助wwk采纳,获得10
8秒前
8秒前
8秒前
9秒前
passion发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
核桃发布了新的文献求助10
10秒前
10秒前
zyw发布了新的文献求助10
11秒前
11秒前
sbdxlwyd完成签到 ,获得积分10
12秒前
12秒前
13秒前
14秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615168
求助须知:如何正确求助?哪些是违规求助? 4700058
关于积分的说明 14906318
捐赠科研通 4741317
什么是DOI,文献DOI怎么找? 2547956
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473774