Delta-Radiomics Based on Dynamic Contrast-Enhanced MRI for Predicting Lymphovascular Invasion in Invasive Breast Cancer

无线电技术 列线图 淋巴血管侵犯 接收机工作特性 医学 逻辑回归 磁共振成像 动态对比度 乳腺癌 放射科 癌症 肿瘤科 内科学 转移
作者
Hong Zheng,Lian Jian,Li Li,Wen Liu,Wei Chen
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (5): 1762-1772 被引量:3
标识
DOI:10.1016/j.acra.2023.11.017
摘要

Rationale and Objectives Treatment strategies for invasive breast cancer require accurate lymphovascular invasion (LVI) predictions. This study aimed to investigate the effectiveness of delta radiomics based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for assessing LVI and develop a nomogram to aid treatment decisions. Materials and Methods Overall, 293 patients with resectable invasive breast cancer underwent preoperative DCE-MRI. Radiomic features were extracted from pre-contrast (A0), first post-contrast (A1), and subtracted images of A0 and A1. Three radiomics models were developed using several data analyses; logistic analyses were performed to identify radiological features to predict the LVI status. A hybrid model integrating both radiological features and optimal radiomics was developed. Receiver operating characteristic analysis was employed to evaluate model performance, using the area under the curve (AUC) as a quantitative metric for discriminative ability. Results In the test set, the Radiomics-Delta model, with 17 radiomic features, had an AUC of 0.781 and accuracy of 0.705. Radiomics-A0, with 10 features, had an AUC of 0.619 and accuracy of 0.523, while Radiomics-A1, with 8 features, had an AUC of 0.715 and accuracy of 0.591. The hybrid model exhibited better performance, with an AUC of 0.868 and accuracy of 0.875, than the radiological and Radiomics-Delta models, with an AUC of 0.759 and 0.781, respectively, and accuracy of 0.773 and 0.705, respectively. Conclusion Compared to Radiomics-A0 and Radiomics-A1, Radiomics-Delta demonstrated superior performance. Moreover, the hybrid model incorporating Radiomics-Delta and radiological features exhibited excellent performance in determining the LVI status in cases of invasive breast cancer. Treatment strategies for invasive breast cancer require accurate lymphovascular invasion (LVI) predictions. This study aimed to investigate the effectiveness of delta radiomics based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for assessing LVI and develop a nomogram to aid treatment decisions. Overall, 293 patients with resectable invasive breast cancer underwent preoperative DCE-MRI. Radiomic features were extracted from pre-contrast (A0), first post-contrast (A1), and subtracted images of A0 and A1. Three radiomics models were developed using several data analyses; logistic analyses were performed to identify radiological features to predict the LVI status. A hybrid model integrating both radiological features and optimal radiomics was developed. Receiver operating characteristic analysis was employed to evaluate model performance, using the area under the curve (AUC) as a quantitative metric for discriminative ability. In the test set, the Radiomics-Delta model, with 17 radiomic features, had an AUC of 0.781 and accuracy of 0.705. Radiomics-A0, with 10 features, had an AUC of 0.619 and accuracy of 0.523, while Radiomics-A1, with 8 features, had an AUC of 0.715 and accuracy of 0.591. The hybrid model exhibited better performance, with an AUC of 0.868 and accuracy of 0.875, than the radiological and Radiomics-Delta models, with an AUC of 0.759 and 0.781, respectively, and accuracy of 0.773 and 0.705, respectively. Compared to Radiomics-A0 and Radiomics-A1, Radiomics-Delta demonstrated superior performance. Moreover, the hybrid model incorporating Radiomics-Delta and radiological features exhibited excellent performance in determining the LVI status in cases of invasive breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
zhuminghui发布了新的文献求助10
1秒前
深情安青应助面包人采纳,获得10
2秒前
2秒前
3秒前
sdfadf发布了新的文献求助30
3秒前
加载中完成签到,获得积分10
4秒前
莉莉安完成签到 ,获得积分10
5秒前
jianrobsim发布了新的文献求助10
5秒前
5秒前
风中元风完成签到,获得积分10
5秒前
6秒前
cz完成签到,获得积分20
7秒前
8秒前
科研通AI2S应助芒夏露秋采纳,获得10
8秒前
8秒前
鲁大师发布了新的文献求助10
9秒前
9秒前
9秒前
自信鞯发布了新的文献求助10
10秒前
奋豆发布了新的文献求助10
10秒前
11秒前
白华苍松发布了新的文献求助20
11秒前
大米发布了新的文献求助10
13秒前
小吉完成签到 ,获得积分10
13秒前
陈陈陈发布了新的文献求助10
13秒前
shmmxy发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
zyqy完成签到 ,获得积分10
15秒前
JHL发布了新的文献求助10
16秒前
如意的玉米完成签到,获得积分10
17秒前
ding应助jyx采纳,获得10
19秒前
20秒前
dijla完成签到 ,获得积分10
20秒前
仙贝发布了新的文献求助10
21秒前
zhuminghui完成签到,获得积分10
21秒前
22秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158017
求助须知:如何正确求助?哪些是违规求助? 2809393
关于积分的说明 7881798
捐赠科研通 2467878
什么是DOI,文献DOI怎么找? 1313757
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943