亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Delta-Radiomics Based on Dynamic Contrast-Enhanced MRI for Predicting Lymphovascular Invasion in Invasive Breast Cancer

无线电技术 列线图 淋巴血管侵犯 接收机工作特性 医学 逻辑回归 磁共振成像 动态对比度 乳腺癌 放射科 癌症 肿瘤科 内科学 转移
作者
Hong Zheng,Lian Jian,Li Li,Wen Liu,Wei Chen
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (5): 1762-1772 被引量:3
标识
DOI:10.1016/j.acra.2023.11.017
摘要

Rationale and Objectives Treatment strategies for invasive breast cancer require accurate lymphovascular invasion (LVI) predictions. This study aimed to investigate the effectiveness of delta radiomics based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for assessing LVI and develop a nomogram to aid treatment decisions. Materials and Methods Overall, 293 patients with resectable invasive breast cancer underwent preoperative DCE-MRI. Radiomic features were extracted from pre-contrast (A0), first post-contrast (A1), and subtracted images of A0 and A1. Three radiomics models were developed using several data analyses; logistic analyses were performed to identify radiological features to predict the LVI status. A hybrid model integrating both radiological features and optimal radiomics was developed. Receiver operating characteristic analysis was employed to evaluate model performance, using the area under the curve (AUC) as a quantitative metric for discriminative ability. Results In the test set, the Radiomics-Delta model, with 17 radiomic features, had an AUC of 0.781 and accuracy of 0.705. Radiomics-A0, with 10 features, had an AUC of 0.619 and accuracy of 0.523, while Radiomics-A1, with 8 features, had an AUC of 0.715 and accuracy of 0.591. The hybrid model exhibited better performance, with an AUC of 0.868 and accuracy of 0.875, than the radiological and Radiomics-Delta models, with an AUC of 0.759 and 0.781, respectively, and accuracy of 0.773 and 0.705, respectively. Conclusion Compared to Radiomics-A0 and Radiomics-A1, Radiomics-Delta demonstrated superior performance. Moreover, the hybrid model incorporating Radiomics-Delta and radiological features exhibited excellent performance in determining the LVI status in cases of invasive breast cancer. Treatment strategies for invasive breast cancer require accurate lymphovascular invasion (LVI) predictions. This study aimed to investigate the effectiveness of delta radiomics based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for assessing LVI and develop a nomogram to aid treatment decisions. Overall, 293 patients with resectable invasive breast cancer underwent preoperative DCE-MRI. Radiomic features were extracted from pre-contrast (A0), first post-contrast (A1), and subtracted images of A0 and A1. Three radiomics models were developed using several data analyses; logistic analyses were performed to identify radiological features to predict the LVI status. A hybrid model integrating both radiological features and optimal radiomics was developed. Receiver operating characteristic analysis was employed to evaluate model performance, using the area under the curve (AUC) as a quantitative metric for discriminative ability. In the test set, the Radiomics-Delta model, with 17 radiomic features, had an AUC of 0.781 and accuracy of 0.705. Radiomics-A0, with 10 features, had an AUC of 0.619 and accuracy of 0.523, while Radiomics-A1, with 8 features, had an AUC of 0.715 and accuracy of 0.591. The hybrid model exhibited better performance, with an AUC of 0.868 and accuracy of 0.875, than the radiological and Radiomics-Delta models, with an AUC of 0.759 and 0.781, respectively, and accuracy of 0.773 and 0.705, respectively. Compared to Radiomics-A0 and Radiomics-A1, Radiomics-Delta demonstrated superior performance. Moreover, the hybrid model incorporating Radiomics-Delta and radiological features exhibited excellent performance in determining the LVI status in cases of invasive breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
落落完成签到 ,获得积分0
15秒前
29秒前
xiaozou55完成签到 ,获得积分10
31秒前
跳跃毒娘发布了新的文献求助10
32秒前
1分钟前
不安的晓灵完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
红色石头发布了新的文献求助10
2分钟前
红色石头完成签到,获得积分20
2分钟前
比比谁的速度快应助张张采纳,获得10
2分钟前
3分钟前
跳跃毒娘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
LeoSam完成签到,获得积分10
4分钟前
4分钟前
Zephyr发布了新的文献求助30
4分钟前
满意的伊发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
yx_cheng应助科研通管家采纳,获得10
5分钟前
yx_cheng应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
小飞猪发布了新的文献求助10
6分钟前
打打应助小飞猪采纳,获得10
6分钟前
伏城完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
Hello应助鬼见愁采纳,获得10
6分钟前
7分钟前
资白玉完成签到 ,获得积分0
7分钟前
7分钟前
yx_cheng应助科研通管家采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008330
求助须知:如何正确求助?哪些是违规求助? 3548050
关于积分的说明 11298670
捐赠科研通 3282900
什么是DOI,文献DOI怎么找? 1810249
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188