Traffic accident duration prediction using multi-mode data and ensemble deep learning

持续时间(音乐) 数据挖掘 深度学习 人工智能 文字2vec 数据建模 预测建模 计算机科学 模式(计算机接口) 机器学习 数据库 操作系统 艺术 文学类 嵌入
作者
Jiaona Chen,Weijun Tao,Jing Zhang,Peng Wang,Yinli Jin
出处
期刊:Heliyon [Elsevier]
卷期号:10 (4): e25957-e25957 被引量:4
标识
DOI:10.1016/j.heliyon.2024.e25957
摘要

Abstract

Predicting the duration of traffic accidents is a critical component of traffic management and emergency response on expressways. Traffic accident information is inherently multi-mode data in terms of data types. However, most existing studies focus on single-mode data, and the influence of multi-mode data on the prediction performances of models has been the subject of only very limited quantitative analysis. The present work addresses these issues by proposing a heterogeneous deep learning architecture employing multi-modal features to improve the accuracy of predictions for traffic accident durations on expressways. Firstly, six unique data modes are obtained based on the structured data and the text data. Secondly, a hybrid deep learning approach is applied to build classification models with reduced prediction error. Finally, a rigorous analysis of the influence for multi-mode data on the accident duration prediction performances is conducted using a variety of deep learning models. The proposed method is evaluated using survey data collected from an expressway monitoring system in Shaanxi Province, China. The experimental results show that Word2Vec-BiGRU-CNN is a suitable and better model using text features for traffic accident duration prediction, as the F1-score is 0.3648. This study confirms that the newly established structured features extracted from text data substantially enhance the prediction effects of deep learning algorithms. However, these new features were a detriment to the prediction effects of conventional machine learning algorithms. Accordingly, these results demonstrate that the processing and extraction of text features is a complex issue in the field of traffic accident duration prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luoxiaotu198完成签到,获得积分10
刚刚
奋斗的萝发布了新的文献求助10
2秒前
闻卓完成签到,获得积分10
6秒前
6秒前
6秒前
L~完成签到,获得积分10
7秒前
7秒前
传奇3应助奋斗的萝采纳,获得10
8秒前
无情向薇完成签到 ,获得积分10
9秒前
Singularity应助Shine采纳,获得10
9秒前
lisen完成签到,获得积分10
9秒前
si完成签到,获得积分10
9秒前
领导范儿应助现实的梦寒采纳,获得10
10秒前
AnSui完成签到,获得积分10
11秒前
MKY完成签到,获得积分10
11秒前
852应助P88JNG采纳,获得10
11秒前
倾听阳光发布了新的文献求助10
12秒前
易点点完成签到 ,获得积分10
12秒前
lisen发布了新的文献求助10
12秒前
CodeCraft应助椰子水采纳,获得10
13秒前
迅速冥茗完成签到,获得积分10
14秒前
刘八一完成签到 ,获得积分10
14秒前
aldehyde应助牧秋妈妈采纳,获得100
15秒前
15秒前
Lucas应助yiyu采纳,获得10
16秒前
16秒前
biubiubiu完成签到,获得积分10
17秒前
欢喜从霜发布了新的文献求助10
17秒前
我是老大应助moumou采纳,获得10
17秒前
17秒前
19秒前
36456657应助栗子芸采纳,获得10
19秒前
小李顺利毕业完成签到,获得积分10
19秒前
19秒前
YXHTCM发布了新的文献求助10
20秒前
ltf完成签到,获得积分10
20秒前
嘎嘎嘎嘎发布了新的文献求助10
20秒前
shaco发布了新的文献求助200
21秒前
哈哈发布了新的文献求助10
23秒前
小柯应助LM123采纳,获得20
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309253
求助须知:如何正确求助?哪些是违规求助? 2942586
关于积分的说明 8509788
捐赠科研通 2617736
什么是DOI,文献DOI怎么找? 1430320
科研通“疑难数据库(出版商)”最低求助积分说明 664123
邀请新用户注册赠送积分活动 649274