已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Traffic accident duration prediction using multi-mode data and ensemble deep learning

持续时间(音乐) 数据挖掘 深度学习 人工智能 文字2vec 数据建模 预测建模 计算机科学 模式(计算机接口) 机器学习 数据库 操作系统 艺术 文学类 嵌入
作者
Jiaona Chen,Weijun Tao,Jing Zhang,Peng Wang,Yinli Jin
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (4): e25957-e25957 被引量:4
标识
DOI:10.1016/j.heliyon.2024.e25957
摘要

Abstract

Predicting the duration of traffic accidents is a critical component of traffic management and emergency response on expressways. Traffic accident information is inherently multi-mode data in terms of data types. However, most existing studies focus on single-mode data, and the influence of multi-mode data on the prediction performances of models has been the subject of only very limited quantitative analysis. The present work addresses these issues by proposing a heterogeneous deep learning architecture employing multi-modal features to improve the accuracy of predictions for traffic accident durations on expressways. Firstly, six unique data modes are obtained based on the structured data and the text data. Secondly, a hybrid deep learning approach is applied to build classification models with reduced prediction error. Finally, a rigorous analysis of the influence for multi-mode data on the accident duration prediction performances is conducted using a variety of deep learning models. The proposed method is evaluated using survey data collected from an expressway monitoring system in Shaanxi Province, China. The experimental results show that Word2Vec-BiGRU-CNN is a suitable and better model using text features for traffic accident duration prediction, as the F1-score is 0.3648. This study confirms that the newly established structured features extracted from text data substantially enhance the prediction effects of deep learning algorithms. However, these new features were a detriment to the prediction effects of conventional machine learning algorithms. Accordingly, these results demonstrate that the processing and extraction of text features is a complex issue in the field of traffic accident duration prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
5秒前
忐忑的烤鸡完成签到,获得积分10
5秒前
温特完成签到 ,获得积分10
5秒前
zlt完成签到,获得积分10
6秒前
6秒前
雍井发布了新的文献求助10
8秒前
田様应助yuwen采纳,获得10
8秒前
小透明发布了新的文献求助10
10秒前
斯文的访烟完成签到,获得积分10
10秒前
zhaoaotao发布了新的文献求助10
11秒前
13秒前
13秒前
14秒前
111完成签到,获得积分10
15秒前
侠医2012完成签到,获得积分0
17秒前
18秒前
18秒前
Leviathan完成签到 ,获得积分10
18秒前
呜呼完成签到,获得积分10
19秒前
20秒前
21秒前
柏林寒冬应助雍井采纳,获得10
21秒前
22秒前
周宇飞完成签到 ,获得积分10
22秒前
充电宝应助科研通管家采纳,获得10
22秒前
22秒前
orixero应助科研通管家采纳,获得10
22秒前
ppp发布了新的文献求助10
23秒前
汤泽琪发布了新的文献求助10
24秒前
xny发布了新的文献求助10
24秒前
Xuayib完成签到 ,获得积分10
25秒前
霸气谷蕊完成签到 ,获得积分10
27秒前
无花果应助haoran采纳,获得10
27秒前
Yuki完成签到 ,获得积分10
29秒前
29秒前
30秒前
freedom发布了新的文献求助10
31秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968181
求助须知:如何正确求助?哪些是违规求助? 3513189
关于积分的说明 11166755
捐赠科研通 3248411
什么是DOI,文献DOI怎么找? 1794243
邀请新用户注册赠送积分活动 874924
科研通“疑难数据库(出版商)”最低求助积分说明 804629