Traffic accident duration prediction using multi-mode data and ensemble deep learning

持续时间(音乐) 数据挖掘 深度学习 人工智能 文字2vec 数据建模 预测建模 计算机科学 模式(计算机接口) 机器学习 数据库 嵌入 操作系统 文学类 艺术
作者
Jiaona Chen,Weijun Tao,Jing Zhang,Peng Wang,Yinli Jin
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (4): e25957-e25957 被引量:4
标识
DOI:10.1016/j.heliyon.2024.e25957
摘要

Abstract

Predicting the duration of traffic accidents is a critical component of traffic management and emergency response on expressways. Traffic accident information is inherently multi-mode data in terms of data types. However, most existing studies focus on single-mode data, and the influence of multi-mode data on the prediction performances of models has been the subject of only very limited quantitative analysis. The present work addresses these issues by proposing a heterogeneous deep learning architecture employing multi-modal features to improve the accuracy of predictions for traffic accident durations on expressways. Firstly, six unique data modes are obtained based on the structured data and the text data. Secondly, a hybrid deep learning approach is applied to build classification models with reduced prediction error. Finally, a rigorous analysis of the influence for multi-mode data on the accident duration prediction performances is conducted using a variety of deep learning models. The proposed method is evaluated using survey data collected from an expressway monitoring system in Shaanxi Province, China. The experimental results show that Word2Vec-BiGRU-CNN is a suitable and better model using text features for traffic accident duration prediction, as the F1-score is 0.3648. This study confirms that the newly established structured features extracted from text data substantially enhance the prediction effects of deep learning algorithms. However, these new features were a detriment to the prediction effects of conventional machine learning algorithms. Accordingly, these results demonstrate that the processing and extraction of text features is a complex issue in the field of traffic accident duration prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qianduoduo完成签到 ,获得积分10
刚刚
putong发布了新的文献求助10
1秒前
杨宝发布了新的文献求助10
2秒前
科研通AI6应助背后的雨竹采纳,获得10
2秒前
qqwdss发布了新的文献求助10
3秒前
3秒前
李健应助科研小白采纳,获得10
4秒前
科研通AI6应助李开心采纳,获得10
5秒前
qianduoduo关注了科研通微信公众号
6秒前
理理发布了新的文献求助10
6秒前
6秒前
英俊的铭应助Yzz采纳,获得10
6秒前
7秒前
wanci应助WYS采纳,获得10
7秒前
SciGPT应助阿巴阿巴采纳,获得10
7秒前
7秒前
侧耳倾听发布了新的文献求助10
7秒前
8秒前
Kathy发布了新的文献求助10
9秒前
科目三应助Salut采纳,获得10
10秒前
李爱国应助chengzi202采纳,获得10
10秒前
852应助123采纳,获得10
10秒前
10秒前
深情安青应助侧耳倾听采纳,获得10
11秒前
Wlgd完成签到,获得积分20
11秒前
合成研究菜鸟完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
糊里糊涂发布了新的文献求助10
13秒前
碧草柴香发布了新的文献求助100
13秒前
浮游应助杨宝采纳,获得10
13秒前
科研小白书hz完成签到 ,获得积分10
14秒前
理理完成签到,获得积分10
14秒前
FangY1发布了新的文献求助10
14秒前
7171717发布了新的文献求助10
15秒前
orixero应助鲸鱼采纳,获得10
15秒前
16秒前
小方应助一块巧克力采纳,获得20
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604729
求助须知:如何正确求助?哪些是违规求助? 4012976
关于积分的说明 12425700
捐赠科研通 3693576
什么是DOI,文献DOI怎么找? 2036429
邀请新用户注册赠送积分活动 1069421
科研通“疑难数据库(出版商)”最低求助积分说明 953917