Traffic accident duration prediction using multi-mode data and ensemble deep learning

持续时间(音乐) 数据挖掘 深度学习 人工智能 文字2vec 数据建模 预测建模 计算机科学 模式(计算机接口) 机器学习 数据库 嵌入 操作系统 文学类 艺术
作者
Jiaona Chen,Weijun Tao,Jing Zhang,Peng Wang,Yinli Jin
出处
期刊:Heliyon [Elsevier]
卷期号:10 (4): e25957-e25957 被引量:4
标识
DOI:10.1016/j.heliyon.2024.e25957
摘要

Abstract

Predicting the duration of traffic accidents is a critical component of traffic management and emergency response on expressways. Traffic accident information is inherently multi-mode data in terms of data types. However, most existing studies focus on single-mode data, and the influence of multi-mode data on the prediction performances of models has been the subject of only very limited quantitative analysis. The present work addresses these issues by proposing a heterogeneous deep learning architecture employing multi-modal features to improve the accuracy of predictions for traffic accident durations on expressways. Firstly, six unique data modes are obtained based on the structured data and the text data. Secondly, a hybrid deep learning approach is applied to build classification models with reduced prediction error. Finally, a rigorous analysis of the influence for multi-mode data on the accident duration prediction performances is conducted using a variety of deep learning models. The proposed method is evaluated using survey data collected from an expressway monitoring system in Shaanxi Province, China. The experimental results show that Word2Vec-BiGRU-CNN is a suitable and better model using text features for traffic accident duration prediction, as the F1-score is 0.3648. This study confirms that the newly established structured features extracted from text data substantially enhance the prediction effects of deep learning algorithms. However, these new features were a detriment to the prediction effects of conventional machine learning algorithms. Accordingly, these results demonstrate that the processing and extraction of text features is a complex issue in the field of traffic accident duration prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助zhu采纳,获得10
刚刚
娃haha完成签到,获得积分10
刚刚
HeHe发布了新的文献求助10
1秒前
lanshuitai发布了新的文献求助100
1秒前
端庄断秋完成签到 ,获得积分20
1秒前
xc完成签到,获得积分10
2秒前
meng完成签到 ,获得积分10
3秒前
我是你哥完成签到,获得积分10
3秒前
yuxiao完成签到,获得积分10
3秒前
你比我笨发布了新的文献求助10
4秒前
缄默完成签到,获得积分10
4秒前
4秒前
geold完成签到,获得积分10
4秒前
TheaGao完成签到 ,获得积分10
4秒前
H丶化羽完成签到 ,获得积分10
5秒前
DZQ完成签到,获得积分10
5秒前
光崽是谁完成签到,获得积分10
6秒前
孔乙己完成签到,获得积分10
6秒前
SimmonsLI发布了新的文献求助10
6秒前
薛变霞完成签到 ,获得积分10
7秒前
郭星星完成签到,获得积分10
8秒前
顾矜应助HeHe采纳,获得10
8秒前
9秒前
剑影完成签到,获得积分10
9秒前
英俊的铭应助孔乙己采纳,获得10
10秒前
虚拟的含灵完成签到,获得积分20
10秒前
10秒前
医学小萌新完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
12秒前
CodeCraft应助晶莹雪2943采纳,获得10
12秒前
liuzihao完成签到,获得积分20
13秒前
研友_X84KrZ完成签到 ,获得积分10
13秒前
Qingcyx发布了新的文献求助10
14秒前
shirley完成签到,获得积分10
14秒前
Adler应助besatified采纳,获得10
15秒前
蔡德富完成签到,获得积分10
15秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099914
求助须知:如何正确求助?哪些是违规求助? 2751373
关于积分的说明 7613446
捐赠科研通 2403368
什么是DOI,文献DOI怎么找? 1275253
科研通“疑难数据库(出版商)”最低求助积分说明 616318
版权声明 599053