Layer-dependent evolution of electronic structures and correlations in rhombohedral multilayer graphene

石墨烯 扫描隧道显微镜 凝聚态物理 材料科学 磁性 超导电性 压扁 图层(电子) 电子结构 光谱学 纳米技术 物理 量子力学 复合材料
作者
Yue-Ying Zhou,Yang Zhang,Shihao Zhang,Hao Cai,Ling-Hui Tong,Yuan Tian,Tongtong Chen,Qiwei Tian,Chen Zhang,Yiliu Wang,Xuming Zou,Xingqiang Liu,Yuanyuan Hu,Li Zhang,Lijie Zhang,Wenxiao Wang,Lei Liao,Zhihui Qin,Long‐Jing Yin
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2312.13637
摘要

The recent discovery of superconductivity and magnetism in trilayer rhombohedral graphene (RG) establishes an ideal, untwisted platform to study strong correlation electronic phenomena. However, the correlated effects in multilayer RG have received limited attention, and, particularly, the evolution of the correlations with increasing layer number remains an unresolved question. Here, we show the observation of layer-dependent electronic structures and correlations, under surprising liquid nitrogen temperature, in RG multilayers from 3 to 9 layers by using scanning tunneling microscopy and spectroscopy. We explicitly determine layer-enhanced low-energy flat bands and interlayer coupling strengths. The former directly demonstrates the further flattening of low-energy bands in thicker RG, and the latter indicates the presence of varying interlayer interactions in RG multilayers. Moreover, we find significant splittings of the flat bands, ranging from ~50-80 meV, at 77 K when they are partially filled, indicating the emergence of interaction-induced strongly correlated states. Particularly, the strength of the correlated states is notably enhanced in thicker RG and reaches its maximum in the six-layer, validating directly theoretical predictions and establishing abundant new candidates for strongly correlated systems. Our results provide valuable insights into the layer dependence of the electronic properties in RG and demonstrate it as a suitable system for investigating robust and highly accessible correlated phases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZCM关闭了ZCM文献求助
刚刚
1秒前
繁星完成签到,获得积分10
1秒前
一颗苹果完成签到 ,获得积分10
1秒前
超帅的遥发布了新的文献求助10
1秒前
生信好难完成签到,获得积分10
2秒前
2秒前
小苏打完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
Sumengyan发布了新的文献求助10
4秒前
Lucas应助自觉的香彤采纳,获得10
5秒前
5秒前
5秒前
XIAONIE25发布了新的文献求助10
5秒前
5秒前
5秒前
嘻嘻发布了新的文献求助10
5秒前
6秒前
小管发布了新的文献求助10
7秒前
科研通AI6应助风中的芷蕾采纳,获得10
7秒前
Luke完成签到,获得积分10
7秒前
nightgaunt完成签到,获得积分10
7秒前
开胃咖喱完成签到,获得积分10
7秒前
二胡儿发布了新的文献求助10
7秒前
荔枝完成签到,获得积分10
7秒前
Cici的新长征完成签到 ,获得积分10
8秒前
棉花糖完成签到,获得积分20
8秒前
9秒前
斯文败类应助含糊的玲采纳,获得10
9秒前
Luna_aaa应助sinlar采纳,获得10
9秒前
9秒前
王啸岳发布了新的文献求助10
9秒前
9秒前
向中恶发布了新的文献求助20
9秒前
叶长安发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285