Differentiable modeling for soil moisture retrieval by unifying deep neural networks and water cloud model

人工神经网络 云计算 含水量 环境科学 计算机科学 可微函数 水分 土壤科学 人工智能 气象学 地质学 数学 地理 岩土工程 操作系统 数学分析
作者
Zhenghao Li,Qiangqiang Yuan
标识
DOI:10.5194/egusphere-egu24-4804
摘要

Machine learning has been widely used in surface soil moisture (SSM) retrieval studies, but in recent years, this purely data-driven retrieval method has been controversial due to its lack of physical interpretability and generalization ability. Physical retrieval models based on the theory of radiative transfer equations respect physical laws, but their retrieval accuracy is generally lower than that of machine learning retrieval methods. In order to explore the retrieval method of unifying these two types of models to maximize the advantages of integrating machine learning models and physical models in the retrieval process, this study took high-resolution soil moisture retrieval as an example, and constructed a differentiable model (DM), which was based on the differentiability of neural networks, and united the water cloud model (WCM) and neural networks by implementing differentiable programming of the WCM in a machine learning platform. The differentiable soil moisture retrieval model took the WCM as the skeleton, and realized SSM retrieval with 10 m resolution based on synthetic aperture radar data, optical data and other auxiliary data. Relying on the DM, we have successfully transformed the problem of physical model parameter calibration into a neural network training problem, which made the retrieval model physically interpretable while allowing the model to be trained using gradient descent for more accurate retrieval results. In addition, the model was comparatively evaluated from multiple perspectives to demonstrate its advantages over machine learning retrieval models and physical retrieval models. This study provides new ideas for the combination of machine learning and physical knowledge in other retrieval studies, and provide new cases for physical knowledge-guided machine learning research in earth sciences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Lucy发布了新的文献求助10
刚刚
dud完成签到,获得积分10
1秒前
思源应助笨笨西装采纳,获得10
1秒前
一眼云烟发布了新的文献求助10
1秒前
科研通AI2S应助春和景明采纳,获得10
1秒前
加减乘除发布了新的文献求助10
2秒前
4秒前
卞威振发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
甜甜的平蓝完成签到 ,获得积分10
5秒前
年轻的宛发布了新的文献求助10
5秒前
7秒前
7秒前
wwyyl发布了新的文献求助10
7秒前
7秒前
8秒前
Akim应助刘忙采纳,获得10
8秒前
所所应助追寻翩跹采纳,获得10
9秒前
慕何完成签到 ,获得积分10
9秒前
10秒前
66发布了新的文献求助10
10秒前
脑洞疼应助可乐土豆饼采纳,获得10
10秒前
10秒前
10秒前
晚星发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
12秒前
12秒前
Orange应助winner2030采纳,获得30
12秒前
yan发布了新的文献求助10
13秒前
13秒前
wwyyl完成签到,获得积分10
13秒前
feiling应助zj采纳,获得10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507383
求助须知:如何正确求助?哪些是违规求助? 4603007
关于积分的说明 14483238
捐赠科研通 4536810
什么是DOI,文献DOI怎么找? 2486410
邀请新用户注册赠送积分活动 1469007
关于科研通互助平台的介绍 1441377