已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Differentiable modeling for soil moisture retrieval by unifying deep neural networks and water cloud model

人工神经网络 云计算 含水量 环境科学 计算机科学 可微函数 水分 土壤科学 人工智能 气象学 地质学 数学 地理 岩土工程 操作系统 数学分析
作者
Zhenghao Li,Qiangqiang Yuan
标识
DOI:10.5194/egusphere-egu24-4804
摘要

Machine learning has been widely used in surface soil moisture (SSM) retrieval studies, but in recent years, this purely data-driven retrieval method has been controversial due to its lack of physical interpretability and generalization ability. Physical retrieval models based on the theory of radiative transfer equations respect physical laws, but their retrieval accuracy is generally lower than that of machine learning retrieval methods. In order to explore the retrieval method of unifying these two types of models to maximize the advantages of integrating machine learning models and physical models in the retrieval process, this study took high-resolution soil moisture retrieval as an example, and constructed a differentiable model (DM), which was based on the differentiability of neural networks, and united the water cloud model (WCM) and neural networks by implementing differentiable programming of the WCM in a machine learning platform. The differentiable soil moisture retrieval model took the WCM as the skeleton, and realized SSM retrieval with 10 m resolution based on synthetic aperture radar data, optical data and other auxiliary data. Relying on the DM, we have successfully transformed the problem of physical model parameter calibration into a neural network training problem, which made the retrieval model physically interpretable while allowing the model to be trained using gradient descent for more accurate retrieval results. In addition, the model was comparatively evaluated from multiple perspectives to demonstrate its advantages over machine learning retrieval models and physical retrieval models. This study provides new ideas for the combination of machine learning and physical knowledge in other retrieval studies, and provide new cases for physical knowledge-guided machine learning research in earth sciences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾经易烟完成签到,获得积分20
刚刚
2秒前
2秒前
科目三应助张张采纳,获得10
3秒前
wam关闭了wam文献求助
3秒前
小盖发布了新的文献求助10
5秒前
6秒前
6秒前
科研通AI6应助喵晓懒采纳,获得10
6秒前
科研小巴发布了新的文献求助10
7秒前
BruceZh完成签到,获得积分10
9秒前
小蘑菇完成签到,获得积分10
9秒前
小盖完成签到,获得积分10
10秒前
务实的千风完成签到,获得积分10
12秒前
hxt发布了新的文献求助50
12秒前
sj发布了新的文献求助10
12秒前
pual完成签到,获得积分10
14秒前
易夜雨居完成签到 ,获得积分10
14秒前
昌莆完成签到 ,获得积分10
16秒前
健忘浩宇完成签到,获得积分10
17秒前
科研通AI6应助sensen采纳,获得10
19秒前
Criminology34应助务实的千风采纳,获得10
21秒前
22秒前
22秒前
msn00完成签到 ,获得积分10
25秒前
叶子完成签到 ,获得积分10
26秒前
26秒前
30秒前
幸运星完成签到 ,获得积分10
31秒前
哩哩完成签到 ,获得积分10
33秒前
浮游应助FWCY采纳,获得10
34秒前
余文乐完成签到 ,获得积分10
34秒前
35秒前
曾经易烟发布了新的文献求助10
37秒前
甜甜冰巧完成签到,获得积分20
37秒前
37秒前
39秒前
甜甜冰巧发布了新的文献求助10
40秒前
哈哈哈完成签到,获得积分10
40秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627693
求助须知:如何正确求助?哪些是违规求助? 4714530
关于积分的说明 14963003
捐赠科研通 4785420
什么是DOI,文献DOI怎么找? 2555122
邀请新用户注册赠送积分活动 1516460
关于科研通互助平台的介绍 1476875