Differentiable modeling for soil moisture retrieval by unifying deep neural networks and water cloud model

人工神经网络 云计算 含水量 环境科学 计算机科学 可微函数 水分 土壤科学 人工智能 气象学 地质学 数学 地理 岩土工程 操作系统 数学分析
作者
Zhenghao Li,Qiangqiang Yuan
标识
DOI:10.5194/egusphere-egu24-4804
摘要

Machine learning has been widely used in surface soil moisture (SSM) retrieval studies, but in recent years, this purely data-driven retrieval method has been controversial due to its lack of physical interpretability and generalization ability. Physical retrieval models based on the theory of radiative transfer equations respect physical laws, but their retrieval accuracy is generally lower than that of machine learning retrieval methods. In order to explore the retrieval method of unifying these two types of models to maximize the advantages of integrating machine learning models and physical models in the retrieval process, this study took high-resolution soil moisture retrieval as an example, and constructed a differentiable model (DM), which was based on the differentiability of neural networks, and united the water cloud model (WCM) and neural networks by implementing differentiable programming of the WCM in a machine learning platform. The differentiable soil moisture retrieval model took the WCM as the skeleton, and realized SSM retrieval with 10 m resolution based on synthetic aperture radar data, optical data and other auxiliary data. Relying on the DM, we have successfully transformed the problem of physical model parameter calibration into a neural network training problem, which made the retrieval model physically interpretable while allowing the model to be trained using gradient descent for more accurate retrieval results. In addition, the model was comparatively evaluated from multiple perspectives to demonstrate its advantages over machine learning retrieval models and physical retrieval models. This study provides new ideas for the combination of machine learning and physical knowledge in other retrieval studies, and provide new cases for physical knowledge-guided machine learning research in earth sciences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
changmengying完成签到,获得积分10
1秒前
风中虔纹完成签到,获得积分10
1秒前
ding应助欧皇降玲采纳,获得10
1秒前
刻苦的幻巧完成签到 ,获得积分10
1秒前
叨叨发布了新的文献求助10
1秒前
清费治乱完成签到,获得积分10
1秒前
xxxx发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
培乐多完成签到,获得积分10
2秒前
Tiffy完成签到,获得积分10
3秒前
英雄睿睿完成签到,获得积分20
3秒前
自信花瓣完成签到,获得积分20
3秒前
3秒前
幽默千秋完成签到,获得积分20
3秒前
3秒前
jk完成签到,获得积分10
3秒前
4秒前
4秒前
简简发布了新的文献求助10
4秒前
4秒前
清脆往事发布了新的文献求助10
4秒前
4秒前
欣喜的人龙完成签到 ,获得积分10
5秒前
Lee发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
洛希极限完成签到,获得积分10
6秒前
SciGPT应助文艺自行车采纳,获得10
7秒前
ding应助李xue采纳,获得10
7秒前
彩虹小马发布了新的文献求助10
7秒前
俊逸随阴完成签到,获得积分20
7秒前
7秒前
汉堡包应助GQIAN采纳,获得10
7秒前
亲亲发布了新的文献求助10
7秒前
英姑应助优秀的媚颜采纳,获得10
8秒前
飞天小猪完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659263
求助须知:如何正确求助?哪些是违规求助? 4828262
关于积分的说明 15086235
捐赠科研通 4817957
什么是DOI,文献DOI怎么找? 2578418
邀请新用户注册赠送积分活动 1533076
关于科研通互助平台的介绍 1491767