Differentiable modeling for soil moisture retrieval by unifying deep neural networks and water cloud model

人工神经网络 云计算 含水量 环境科学 计算机科学 可微函数 水分 土壤科学 人工智能 气象学 地质学 数学 地理 岩土工程 数学分析 操作系统
作者
Zhenghao Li,Qiangqiang Yuan
标识
DOI:10.5194/egusphere-egu24-4804
摘要

Machine learning has been widely used in surface soil moisture (SSM) retrieval studies, but in recent years, this purely data-driven retrieval method has been controversial due to its lack of physical interpretability and generalization ability. Physical retrieval models based on the theory of radiative transfer equations respect physical laws, but their retrieval accuracy is generally lower than that of machine learning retrieval methods. In order to explore the retrieval method of unifying these two types of models to maximize the advantages of integrating machine learning models and physical models in the retrieval process, this study took high-resolution soil moisture retrieval as an example, and constructed a differentiable model (DM), which was based on the differentiability of neural networks, and united the water cloud model (WCM) and neural networks by implementing differentiable programming of the WCM in a machine learning platform. The differentiable soil moisture retrieval model took the WCM as the skeleton, and realized SSM retrieval with 10 m resolution based on synthetic aperture radar data, optical data and other auxiliary data. Relying on the DM, we have successfully transformed the problem of physical model parameter calibration into a neural network training problem, which made the retrieval model physically interpretable while allowing the model to be trained using gradient descent for more accurate retrieval results. In addition, the model was comparatively evaluated from multiple perspectives to demonstrate its advantages over machine learning retrieval models and physical retrieval models. This study provides new ideas for the combination of machine learning and physical knowledge in other retrieval studies, and provide new cases for physical knowledge-guided machine learning research in earth sciences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助melodyezi采纳,获得10
刚刚
蓝色条纹衫完成签到 ,获得积分10
刚刚
1秒前
1秒前
kingwhitewing发布了新的文献求助10
1秒前
灵巧汉堡完成签到 ,获得积分10
2秒前
SciGPT应助幸福胡萝卜采纳,获得10
3秒前
积极晓兰完成签到,获得积分10
3秒前
3秒前
离子电池完成签到,获得积分10
3秒前
小熊饼干完成签到,获得积分10
3秒前
Ryuichi完成签到 ,获得积分10
4秒前
冷静的平安完成签到,获得积分20
4秒前
周士乐完成签到,获得积分10
4秒前
juan完成签到,获得积分10
5秒前
cheeselemon182完成签到,获得积分10
5秒前
英勇凝旋完成签到,获得积分10
6秒前
HopeStar发布了新的文献求助10
6秒前
6秒前
石幻枫完成签到 ,获得积分10
7秒前
生动盼秋发布了新的文献求助10
7秒前
韭黄发布了新的文献求助10
7秒前
Eliauk完成签到,获得积分10
8秒前
小野狼完成签到,获得积分10
8秒前
威武诺言完成签到,获得积分10
8秒前
fengye发布了新的文献求助10
8秒前
李东东完成签到 ,获得积分10
8秒前
Zn应助hulin_zjxu采纳,获得10
8秒前
海鸥海鸥发布了新的文献求助50
9秒前
小乔要努力变强完成签到,获得积分10
9秒前
YANG完成签到 ,获得积分10
9秒前
9秒前
在水一方应助马保国123采纳,获得10
9秒前
Jovid完成签到,获得积分10
10秒前
建成完成签到,获得积分10
10秒前
爆米花应助落落采纳,获得10
10秒前
852应助liu123479采纳,获得20
11秒前
11秒前
无情念之发布了新的文献求助10
11秒前
lilac应助Rocky采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759