Differentiable modeling for soil moisture retrieval by unifying deep neural networks and water cloud model

人工神经网络 云计算 含水量 环境科学 计算机科学 可微函数 水分 土壤科学 人工智能 气象学 地质学 数学 地理 岩土工程 操作系统 数学分析
作者
Zhenghao Li,Qiangqiang Yuan
标识
DOI:10.5194/egusphere-egu24-4804
摘要

Machine learning has been widely used in surface soil moisture (SSM) retrieval studies, but in recent years, this purely data-driven retrieval method has been controversial due to its lack of physical interpretability and generalization ability. Physical retrieval models based on the theory of radiative transfer equations respect physical laws, but their retrieval accuracy is generally lower than that of machine learning retrieval methods. In order to explore the retrieval method of unifying these two types of models to maximize the advantages of integrating machine learning models and physical models in the retrieval process, this study took high-resolution soil moisture retrieval as an example, and constructed a differentiable model (DM), which was based on the differentiability of neural networks, and united the water cloud model (WCM) and neural networks by implementing differentiable programming of the WCM in a machine learning platform. The differentiable soil moisture retrieval model took the WCM as the skeleton, and realized SSM retrieval with 10 m resolution based on synthetic aperture radar data, optical data and other auxiliary data. Relying on the DM, we have successfully transformed the problem of physical model parameter calibration into a neural network training problem, which made the retrieval model physically interpretable while allowing the model to be trained using gradient descent for more accurate retrieval results. In addition, the model was comparatively evaluated from multiple perspectives to demonstrate its advantages over machine learning retrieval models and physical retrieval models. This study provides new ideas for the combination of machine learning and physical knowledge in other retrieval studies, and provide new cases for physical knowledge-guided machine learning research in earth sciences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
西梅发布了新的文献求助10
2秒前
4秒前
暖冬22发布了新的文献求助10
4秒前
景穆完成签到,获得积分10
5秒前
5秒前
仁仁仁完成签到,获得积分10
6秒前
6秒前
7秒前
coco完成签到,获得积分20
7秒前
完美世界应助lulu采纳,获得10
8秒前
xz完成签到,获得积分10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得20
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
9秒前
Orange应助科研通管家采纳,获得10
9秒前
Livrik发布了新的文献求助10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
ltxinanjiao发布了新的文献求助10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
义气千风发布了新的文献求助10
9秒前
liubo发布了新的文献求助10
9秒前
coco发布了新的文献求助10
10秒前
星野发布了新的文献求助10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
xuan应助科研通管家采纳,获得100
10秒前
liuteng完成签到,获得积分10
10秒前
浮游应助科研通管家采纳,获得20
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
10秒前
李爱国应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5227238
求助须知:如何正确求助?哪些是违规求助? 4398359
关于积分的说明 13689318
捐赠科研通 4263055
什么是DOI,文献DOI怎么找? 2339509
邀请新用户注册赠送积分活动 1336803
关于科研通互助平台的介绍 1292920