Differentiable modeling for soil moisture retrieval by unifying deep neural networks and water cloud model

人工神经网络 云计算 含水量 环境科学 计算机科学 可微函数 水分 土壤科学 人工智能 气象学 地质学 数学 地理 岩土工程 操作系统 数学分析
作者
Zhenghao Li,Qiangqiang Yuan
标识
DOI:10.5194/egusphere-egu24-4804
摘要

Machine learning has been widely used in surface soil moisture (SSM) retrieval studies, but in recent years, this purely data-driven retrieval method has been controversial due to its lack of physical interpretability and generalization ability. Physical retrieval models based on the theory of radiative transfer equations respect physical laws, but their retrieval accuracy is generally lower than that of machine learning retrieval methods. In order to explore the retrieval method of unifying these two types of models to maximize the advantages of integrating machine learning models and physical models in the retrieval process, this study took high-resolution soil moisture retrieval as an example, and constructed a differentiable model (DM), which was based on the differentiability of neural networks, and united the water cloud model (WCM) and neural networks by implementing differentiable programming of the WCM in a machine learning platform. The differentiable soil moisture retrieval model took the WCM as the skeleton, and realized SSM retrieval with 10 m resolution based on synthetic aperture radar data, optical data and other auxiliary data. Relying on the DM, we have successfully transformed the problem of physical model parameter calibration into a neural network training problem, which made the retrieval model physically interpretable while allowing the model to be trained using gradient descent for more accurate retrieval results. In addition, the model was comparatively evaluated from multiple perspectives to demonstrate its advantages over machine learning retrieval models and physical retrieval models. This study provides new ideas for the combination of machine learning and physical knowledge in other retrieval studies, and provide new cases for physical knowledge-guided machine learning research in earth sciences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭金玲完成签到,获得积分10
刚刚
李健应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得30
1秒前
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
2秒前
杨衍发布了新的文献求助10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
qqq发布了新的文献求助10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
2秒前
Owen应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425046
求助须知:如何正确求助?哪些是违规求助? 4539189
关于积分的说明 14166098
捐赠科研通 4456315
什么是DOI,文献DOI怎么找? 2444120
邀请新用户注册赠送积分活动 1435182
关于科研通互助平台的介绍 1412492