Differentiable modeling for soil moisture retrieval by unifying deep neural networks and water cloud model

人工神经网络 云计算 含水量 环境科学 计算机科学 可微函数 水分 土壤科学 人工智能 气象学 地质学 数学 地理 岩土工程 操作系统 数学分析
作者
Zhenghao Li,Qiangqiang Yuan
标识
DOI:10.5194/egusphere-egu24-4804
摘要

Machine learning has been widely used in surface soil moisture (SSM) retrieval studies, but in recent years, this purely data-driven retrieval method has been controversial due to its lack of physical interpretability and generalization ability. Physical retrieval models based on the theory of radiative transfer equations respect physical laws, but their retrieval accuracy is generally lower than that of machine learning retrieval methods. In order to explore the retrieval method of unifying these two types of models to maximize the advantages of integrating machine learning models and physical models in the retrieval process, this study took high-resolution soil moisture retrieval as an example, and constructed a differentiable model (DM), which was based on the differentiability of neural networks, and united the water cloud model (WCM) and neural networks by implementing differentiable programming of the WCM in a machine learning platform. The differentiable soil moisture retrieval model took the WCM as the skeleton, and realized SSM retrieval with 10 m resolution based on synthetic aperture radar data, optical data and other auxiliary data. Relying on the DM, we have successfully transformed the problem of physical model parameter calibration into a neural network training problem, which made the retrieval model physically interpretable while allowing the model to be trained using gradient descent for more accurate retrieval results. In addition, the model was comparatively evaluated from multiple perspectives to demonstrate its advantages over machine learning retrieval models and physical retrieval models. This study provides new ideas for the combination of machine learning and physical knowledge in other retrieval studies, and provide new cases for physical knowledge-guided machine learning research in earth sciences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助考研小白采纳,获得10
刚刚
totoro发布了新的文献求助10
1秒前
hahaha1关注了科研通微信公众号
1秒前
小羊发布了新的文献求助10
2秒前
3秒前
3秒前
汉堡包应助xa采纳,获得10
3秒前
李健应助奔奔要早睡采纳,获得10
4秒前
量子星尘发布了新的文献求助20
5秒前
5秒前
CaliU完成签到,获得积分10
5秒前
6秒前
lier完成签到,获得积分10
6秒前
所所应助饼饼采纳,获得10
6秒前
小小aa16发布了新的文献求助10
6秒前
7秒前
7秒前
33完成签到,获得积分10
7秒前
yhdeng完成签到,获得积分10
7秒前
STAN完成签到,获得积分10
8秒前
bkagyin应助qq糖采纳,获得10
8秒前
叶伟帮发布了新的文献求助10
8秒前
老仙翁完成签到,获得积分10
8秒前
小马甲应助小羊采纳,获得30
9秒前
深情安青应助小羊采纳,获得10
9秒前
里特思达发布了新的文献求助10
11秒前
11秒前
博修发布了新的文献求助10
11秒前
善学以致用应助rebecca采纳,获得10
12秒前
12秒前
医路无悔发布了新的文献求助10
12秒前
ferayn完成签到 ,获得积分10
12秒前
DAYE完成签到,获得积分10
13秒前
考研小白发布了新的文献求助10
13秒前
大模型应助七七采纳,获得10
13秒前
14秒前
14秒前
15秒前
失眠的纸鹤完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4573588
求助须知:如何正确求助?哪些是违规求助? 3993911
关于积分的说明 12364183
捐赠科研通 3667119
什么是DOI,文献DOI怎么找? 2021045
邀请新用户注册赠送积分活动 1055221
科研通“疑难数据库(出版商)”最低求助积分说明 942616