Differentiable modeling for soil moisture retrieval by unifying deep neural networks and water cloud model

人工神经网络 云计算 含水量 环境科学 计算机科学 可微函数 水分 土壤科学 人工智能 气象学 地质学 数学 地理 岩土工程 操作系统 数学分析
作者
Zhenghao Li,Qiangqiang Yuan
标识
DOI:10.5194/egusphere-egu24-4804
摘要

Machine learning has been widely used in surface soil moisture (SSM) retrieval studies, but in recent years, this purely data-driven retrieval method has been controversial due to its lack of physical interpretability and generalization ability. Physical retrieval models based on the theory of radiative transfer equations respect physical laws, but their retrieval accuracy is generally lower than that of machine learning retrieval methods. In order to explore the retrieval method of unifying these two types of models to maximize the advantages of integrating machine learning models and physical models in the retrieval process, this study took high-resolution soil moisture retrieval as an example, and constructed a differentiable model (DM), which was based on the differentiability of neural networks, and united the water cloud model (WCM) and neural networks by implementing differentiable programming of the WCM in a machine learning platform. The differentiable soil moisture retrieval model took the WCM as the skeleton, and realized SSM retrieval with 10 m resolution based on synthetic aperture radar data, optical data and other auxiliary data. Relying on the DM, we have successfully transformed the problem of physical model parameter calibration into a neural network training problem, which made the retrieval model physically interpretable while allowing the model to be trained using gradient descent for more accurate retrieval results. In addition, the model was comparatively evaluated from multiple perspectives to demonstrate its advantages over machine learning retrieval models and physical retrieval models. This study provides new ideas for the combination of machine learning and physical knowledge in other retrieval studies, and provide new cases for physical knowledge-guided machine learning research in earth sciences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shero快毕业完成签到 ,获得积分10
1秒前
4秒前
坚定的小蘑菇完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
橘子海完成签到 ,获得积分10
13秒前
可爱的函函应助orangel采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
dingyunfei完成签到,获得积分10
18秒前
21秒前
友好灵阳完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
29秒前
LY完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
司空御宇完成签到 ,获得积分10
34秒前
smile完成签到,获得积分10
34秒前
JamesPei应助xiuxiu125采纳,获得10
34秒前
Song完成签到 ,获得积分10
34秒前
科目三应助好运旺旺采纳,获得10
35秒前
坐宝马吃地瓜完成签到 ,获得积分10
39秒前
一只榴莲完成签到,获得积分10
40秒前
好运旺旺完成签到 ,获得积分20
42秒前
量子星尘发布了新的文献求助10
45秒前
Henry完成签到,获得积分10
45秒前
634301059完成签到 ,获得积分10
53秒前
54秒前
Luna爱科研完成签到 ,获得积分10
57秒前
好运旺旺发布了新的文献求助10
59秒前
灯座完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
灵巧的长颈鹿完成签到,获得积分10
1分钟前
1分钟前
春春完成签到,获得积分10
1分钟前
1分钟前
wuyyuan完成签到 ,获得积分10
1分钟前
wonwojo完成签到 ,获得积分10
1分钟前
高高珩完成签到 ,获得积分10
1分钟前
天天快乐应助bear采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671500
求助须知:如何正确求助?哪些是违规求助? 4918822
关于积分的说明 15134852
捐赠科研通 4830227
什么是DOI,文献DOI怎么找? 2586973
邀请新用户注册赠送积分活动 1540582
关于科研通互助平台的介绍 1498856