Differentiable modeling for soil moisture retrieval by unifying deep neural networks and water cloud model

人工神经网络 云计算 含水量 环境科学 计算机科学 可微函数 水分 土壤科学 人工智能 气象学 地质学 数学 地理 岩土工程 操作系统 数学分析
作者
Zhenghao Li,Qiangqiang Yuan
标识
DOI:10.5194/egusphere-egu24-4804
摘要

Machine learning has been widely used in surface soil moisture (SSM) retrieval studies, but in recent years, this purely data-driven retrieval method has been controversial due to its lack of physical interpretability and generalization ability. Physical retrieval models based on the theory of radiative transfer equations respect physical laws, but their retrieval accuracy is generally lower than that of machine learning retrieval methods. In order to explore the retrieval method of unifying these two types of models to maximize the advantages of integrating machine learning models and physical models in the retrieval process, this study took high-resolution soil moisture retrieval as an example, and constructed a differentiable model (DM), which was based on the differentiability of neural networks, and united the water cloud model (WCM) and neural networks by implementing differentiable programming of the WCM in a machine learning platform. The differentiable soil moisture retrieval model took the WCM as the skeleton, and realized SSM retrieval with 10 m resolution based on synthetic aperture radar data, optical data and other auxiliary data. Relying on the DM, we have successfully transformed the problem of physical model parameter calibration into a neural network training problem, which made the retrieval model physically interpretable while allowing the model to be trained using gradient descent for more accurate retrieval results. In addition, the model was comparatively evaluated from multiple perspectives to demonstrate its advantages over machine learning retrieval models and physical retrieval models. This study provides new ideas for the combination of machine learning and physical knowledge in other retrieval studies, and provide new cases for physical knowledge-guided machine learning research in earth sciences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
zhao完成签到,获得积分10
5秒前
ZengFly完成签到,获得积分10
5秒前
shushuwuwu发布了新的文献求助30
5秒前
惕守应助小化采纳,获得10
5秒前
真实的傲儿完成签到 ,获得积分10
7秒前
Cssss完成签到,获得积分10
7秒前
虞美人发布了新的文献求助10
8秒前
华仔应助追风少年采纳,获得10
8秒前
稳重寒梦完成签到,获得积分10
9秒前
9秒前
liao发布了新的文献求助10
9秒前
10秒前
动听清炎完成签到,获得积分10
12秒前
Danish发布了新的文献求助10
15秒前
ccc发布了新的文献求助10
15秒前
罗媛完成签到,获得积分20
15秒前
222666完成签到,获得积分10
15秒前
善学以致用应助xixi采纳,获得10
16秒前
Jasper应助shushuwuwu采纳,获得10
17秒前
17秒前
19秒前
20秒前
20秒前
20秒前
小蘑菇应助熙慕采纳,获得10
21秒前
D-L@rabbit发布了新的文献求助10
21秒前
英姑应助zhangxu采纳,获得30
22秒前
jeremyher完成签到,获得积分10
23秒前
23秒前
zuodadu发布了新的文献求助10
26秒前
Cssss发布了新的文献求助10
26秒前
26秒前
Orange应助liao采纳,获得10
26秒前
共享精神应助ccc采纳,获得10
28秒前
29秒前
hulian发布了新的文献求助10
29秒前
英俊的铭应助快乐寄风采纳,获得10
31秒前
qiqi发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589963
求助须知:如何正确求助?哪些是违规求助? 4674416
关于积分的说明 14793871
捐赠科研通 4629469
什么是DOI,文献DOI怎么找? 2532480
邀请新用户注册赠送积分活动 1501159
关于科研通互助平台的介绍 1468527