Differentiable modeling for soil moisture retrieval by unifying deep neural networks and water cloud model

人工神经网络 云计算 含水量 环境科学 计算机科学 可微函数 水分 土壤科学 人工智能 气象学 地质学 数学 地理 岩土工程 操作系统 数学分析
作者
Zhenghao Li,Qiangqiang Yuan
标识
DOI:10.5194/egusphere-egu24-4804
摘要

Machine learning has been widely used in surface soil moisture (SSM) retrieval studies, but in recent years, this purely data-driven retrieval method has been controversial due to its lack of physical interpretability and generalization ability. Physical retrieval models based on the theory of radiative transfer equations respect physical laws, but their retrieval accuracy is generally lower than that of machine learning retrieval methods. In order to explore the retrieval method of unifying these two types of models to maximize the advantages of integrating machine learning models and physical models in the retrieval process, this study took high-resolution soil moisture retrieval as an example, and constructed a differentiable model (DM), which was based on the differentiability of neural networks, and united the water cloud model (WCM) and neural networks by implementing differentiable programming of the WCM in a machine learning platform. The differentiable soil moisture retrieval model took the WCM as the skeleton, and realized SSM retrieval with 10 m resolution based on synthetic aperture radar data, optical data and other auxiliary data. Relying on the DM, we have successfully transformed the problem of physical model parameter calibration into a neural network training problem, which made the retrieval model physically interpretable while allowing the model to be trained using gradient descent for more accurate retrieval results. In addition, the model was comparatively evaluated from multiple perspectives to demonstrate its advantages over machine learning retrieval models and physical retrieval models. This study provides new ideas for the combination of machine learning and physical knowledge in other retrieval studies, and provide new cases for physical knowledge-guided machine learning research in earth sciences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助机智跳跳糖采纳,获得10
刚刚
LCC发布了新的文献求助10
刚刚
hhllhh发布了新的文献求助10
1秒前
1秒前
1秒前
Zyw关注了科研通微信公众号
2秒前
3秒前
微光熠发布了新的文献求助10
3秒前
称心的水蓉完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
nature榜上发布了新的文献求助10
3秒前
Owen应助人类不宜搞科研采纳,获得10
3秒前
ww完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
于瑜与余发布了新的文献求助10
6秒前
6秒前
元谷雪发布了新的文献求助10
6秒前
7秒前
8秒前
自然听兰发布了新的文献求助10
8秒前
Jerryis发布了新的文献求助10
9秒前
10秒前
共享精神应助李耀京采纳,获得30
10秒前
10秒前
黄诗淇完成签到,获得积分10
11秒前
11秒前
123456发布了新的文献求助10
11秒前
11秒前
漱泉枕石发布了新的文献求助10
12秒前
12秒前
Lucas应助俊逸的三毒采纳,获得10
12秒前
有风的地方完成签到 ,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
CodeCraft应助YY再摆烂采纳,获得10
14秒前
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277