Differentiable modeling for soil moisture retrieval by unifying deep neural networks and water cloud model

人工神经网络 云计算 含水量 环境科学 计算机科学 可微函数 水分 土壤科学 人工智能 气象学 地质学 数学 地理 岩土工程 操作系统 数学分析
作者
Zhenghao Li,Qiangqiang Yuan
标识
DOI:10.5194/egusphere-egu24-4804
摘要

Machine learning has been widely used in surface soil moisture (SSM) retrieval studies, but in recent years, this purely data-driven retrieval method has been controversial due to its lack of physical interpretability and generalization ability. Physical retrieval models based on the theory of radiative transfer equations respect physical laws, but their retrieval accuracy is generally lower than that of machine learning retrieval methods. In order to explore the retrieval method of unifying these two types of models to maximize the advantages of integrating machine learning models and physical models in the retrieval process, this study took high-resolution soil moisture retrieval as an example, and constructed a differentiable model (DM), which was based on the differentiability of neural networks, and united the water cloud model (WCM) and neural networks by implementing differentiable programming of the WCM in a machine learning platform. The differentiable soil moisture retrieval model took the WCM as the skeleton, and realized SSM retrieval with 10 m resolution based on synthetic aperture radar data, optical data and other auxiliary data. Relying on the DM, we have successfully transformed the problem of physical model parameter calibration into a neural network training problem, which made the retrieval model physically interpretable while allowing the model to be trained using gradient descent for more accurate retrieval results. In addition, the model was comparatively evaluated from multiple perspectives to demonstrate its advantages over machine learning retrieval models and physical retrieval models. This study provides new ideas for the combination of machine learning and physical knowledge in other retrieval studies, and provide new cases for physical knowledge-guided machine learning research in earth sciences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
科研通AI6应助刘禹彤采纳,获得30
1秒前
爆米花应助陈建美采纳,获得10
2秒前
丘比特应助学习采纳,获得10
2秒前
wanci应助Fan采纳,获得10
4秒前
4秒前
4秒前
whisper发布了新的文献求助10
5秒前
5秒前
蟑先生发布了新的文献求助10
5秒前
852应助Roger采纳,获得10
6秒前
6秒前
烟花应助Lulululuying采纳,获得10
6秒前
Mic应助聪明的柠檬采纳,获得10
7秒前
qi完成签到,获得积分10
8秒前
慕青应助生锈的西瓜刀采纳,获得10
8秒前
ccc完成签到,获得积分10
8秒前
默默冬瓜发布了新的文献求助10
8秒前
8秒前
8秒前
Triangle1116完成签到 ,获得积分10
9秒前
9秒前
平凡之路发布了新的文献求助10
9秒前
刘禹彤完成签到,获得积分10
9秒前
香蕉觅云应助蟑先生采纳,获得10
9秒前
9秒前
sunishope发布了新的文献求助10
10秒前
XiaoJie发布了新的文献求助10
10秒前
11秒前
玄风应助岳拔萃采纳,获得10
11秒前
李迅迅发布了新的文献求助10
12秒前
12秒前
13秒前
abby完成签到,获得积分10
13秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547895
求助须知:如何正确求助?哪些是违规求助? 4633315
关于积分的说明 14630622
捐赠科研通 4574970
什么是DOI,文献DOI怎么找? 2508753
邀请新用户注册赠送积分活动 1485041
关于科研通互助平台的介绍 1456069