量子点
激子
离解(化学)
光致发光
钙钛矿(结构)
密度泛函理论
材料科学
光催化
超快激光光谱学
化学物理
电子转移
纳米技术
化学
光谱学
光电子学
光化学
物理化学
物理
计算化学
凝聚态物理
结晶学
催化作用
生物化学
量子力学
作者
Fengyi Zhong,Jianping Sheng,Chenyu Du,Ye He,Yanjuan Sun,Fan Dong
标识
DOI:10.1016/j.scib.2024.01.027
摘要
Perovskite quantum dots (PQDs) hold immense potential as photocatalysts for CO2 reduction due to their remarkable quantum properties, which facilitates the generation of multiple excitons, providing the necessary high-energy electrons for CO2 photoreduction. However, harnessing multi-excitons in PQDs for superior photocatalysis remains challenging, as achieving the concurrent dissociation of excitons and interparticle energy transfer proves elusive. This study introduces a ligand density-controlled strategy to enhance both exciton dissociation and interparticle energy transfer in CsPbBr3 PQDs. Optimized CsPbBr3 PQDs with the regulated ligand density exhibit efficient photocatalytic conversion of CO2 to CO, achieving a 2.26-fold improvement over unoptimized counterparts while maintaining chemical integrity. Multiple analytical techniques, including Kelvin probe force microscopy, temperature-dependent photoluminescence, femtosecond transient absorption spectroscopy, and density functional theory calculations, collectively affirm that the proper ligand termination promotes the charge separation and the interparticle transfer through ligand-mediated interfacial electron coupling and electronic interactions. This work reveals ligand density-dependent variations in the gas-solid photocatalytic CO2 reduction performance of CsPbBr3 PQDs, underscoring the importance of ligand engineering for enhancing quantum dot photocatalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI