计算机科学
非线性系统
模糊逻辑
控制理论(社会学)
理论(学习稳定性)
离散时间和连续时间
间歇控制
模糊控制系统
控制(管理)
跳跃
多项式的
数学优化
数学
控制工程
人工智能
统计
物理
量子力学
工程类
数学分析
机器学习
作者
Wenhua Wang,Wenjing Yang,Yongbao Wu,Wenxue Li
标识
DOI:10.1016/j.engappai.2024.107899
摘要
In this paper, the practical stabilization of highly nonlinear Takagi–Sugeno fuzzy complex networks with Markovian jump (HT-SFNM) is investigated via aperiodically intermittent discrete-time observation control (AID-TOC). Compared to existing articles on highly nonlinear complex networks, this paper considers both Takagi–Sugeno fuzzy rules and Markovian jump for the first time, and uses AID-TOC to solve its stability problem. Furthermore, more general polynomial growth conditions are adopted instead of the conventional linear growth conditions, which makes the model more universal. Finally, two numerical examples are presented to illustrate the effectiveness of the theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI