Geography-aware Heterogeneous Graph Contrastive Learning for Travel Recommendation

计算机科学 推荐系统 旅游 模式(遗传算法) 特征学习 图形 情报检索 匹配(统计) 产品(数学) 万维网 数据科学 人工智能 理论计算机科学 地理 统计 几何学 数学 考古
作者
Lei Chen,Jie Cao,Weichao Liang,Qiaolin Ye
出处
期刊:ACM Transactions on Spatial Algorithms and Systems 被引量:1
标识
DOI:10.1145/3641277
摘要

Recommendation system concentrates on quickly matching products to consumer’s needs which plays a major role in improving user experiences and increase conversion rate. Travel recommendation has become a hot topic in both industry and academia with the development of the tourism industry. Nevertheless, the selection of travel products entails careful consideration of various geographical factors, such as departure and destination. Meanwhile, due to the limitation of finance and time, users browse and purchase travel products less frequently than they do for traditional products, which leads to data sparsity problem in representation learning. To solve these challenges, a novel model named GHGCL (short for G eography-aware H eterogeneous G raph C ontrastive L earning) is proposed for recommending travel products. Concretely, we model the travel recommender system as an heterogeneous information network with geographical information, and capture diverse user preferences from local and high-order structures. Especially, we design two kinds of contrastive learning tasks for better user and travel product representation learning. The multi-view contrastive learning aims to bridge the gap between network schema and meta-path view representations. The meta-path contrastive learning focuses on modeling the coarse-grained commonality between different meta-paths from the perspective of different geographical factors, i.e., departure and destination. We assess the performance of GHGCL by performing a series of experiments on a real-world dataset and the results clearly verify its superiority as compared to the baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu完成签到,获得积分10
2秒前
无花果应助yls采纳,获得30
3秒前
归尘完成签到,获得积分10
4秒前
5秒前
6秒前
Maryjo发布了新的文献求助10
6秒前
spy完成签到,获得积分20
6秒前
7秒前
8秒前
哈哈大王完成签到 ,获得积分10
9秒前
ShuV发布了新的文献求助10
10秒前
TOBY发布了新的文献求助10
11秒前
zzz发布了新的文献求助30
13秒前
13秒前
ZZZ发布了新的文献求助10
14秒前
菜鸟12完成签到,获得积分20
15秒前
aldehyde应助额我认为采纳,获得10
15秒前
16秒前
Jasper应助科研进化中采纳,获得10
16秒前
21秒前
23秒前
渊思发布了新的文献求助10
23秒前
qwe发布了新的文献求助10
23秒前
鲨鱼辣椒完成签到 ,获得积分10
24秒前
JamesPei应助W~舞采纳,获得10
25秒前
乐乐应助ZZZ采纳,获得10
26秒前
Maryjo完成签到,获得积分10
26秒前
zhouji完成签到,获得积分10
30秒前
zmy完成签到 ,获得积分10
32秒前
白昼の月完成签到 ,获得积分0
32秒前
123444发布了新的文献求助10
34秒前
35秒前
38秒前
顾矜应助123444采纳,获得10
40秒前
42秒前
44秒前
44秒前
年轻的青柏完成签到,获得积分10
44秒前
星辰大海应助spy采纳,获得10
45秒前
zhouji发布了新的文献求助10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511680
关于积分的说明 11159133
捐赠科研通 3246277
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343