计算机科学
马尔可夫决策过程
背景(考古学)
紧急医疗服务
排队论
运筹学
软件部署
马尔可夫过程
工程类
医疗急救
医学
计算机网络
古生物学
操作系统
统计
生物
数学
作者
Xiaoquan Gao,Nan Kong,Paul M. Griffin
标识
DOI:10.1287/msom.2022.0166
摘要
Problem definition: Uncrewed aerial vehicles (UAVs) are transforming emergency service logistics applications across sectors, offering easy deployment and rapid response. In the context of emergency medical services (EMS), UAVs have the potential to augment ambulances by leveraging bystander assistance, thereby reducing response times for delivering urgent medical interventions and improving EMS outcomes. Notably, the use of UAVs for opioid overdose cases is particularly promising as it addresses the challenges faced by ambulances in delivering timely medication. This study aims to optimize the integration of UAVs and bystanders into EMS in order to minimize average response times for overdose interventions. Methodology/results: We formulate the joint operation of UAVs with ambulances through a Markov decision process that captures random emergency vehicle travel times and bystander availability. We apply an approximate dynamic programming approach to mitigate the solution challenges from high-dimensional state variables and complex decisions through a neural network-based approximation of the value functions (NN-API). To design the approximation, we construct a set of basis functions based on queueing and geographic properties of the UAV-augmented EMS system. Managerial implications: The simulation results suggest that our NN-API policy tends to outperform several noteworthy rule- and optimization-based benchmark policies in terms of accumulated rewards, particularly for situations that are primarily characterized by high request arrival rates and a limited number of available ambulances and UAVs. The results also demonstrate the benefits of incorporating UAVs into the EMS system and the effectiveness of an intelligent real-time operations strategy in addressing capacity shortages, which are often a problem in rural areas of the United States. Additionally, the results provide insights into specific contributions of each dispatching or redeployment strategy to overall performance improvement. Funding: This work was supported by the National Science [Grant 1761022]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0166
科研通智能强力驱动
Strongly Powered by AbleSci AI