Shortening Emergency Medical Response Time with Joint Operations of Uncrewed Aerial Vehicles with Ambulances

计算机科学 马尔可夫决策过程 背景(考古学) 紧急医疗服务 排队论 运筹学 软件部署 马尔可夫过程 工程类 医疗急救 医学 计算机网络 古生物学 操作系统 统计 生物 数学
作者
Xiaoquan Gao,Nan Kong,Paul M. Griffin
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (2): 447-464 被引量:4
标识
DOI:10.1287/msom.2022.0166
摘要

Problem definition: Uncrewed aerial vehicles (UAVs) are transforming emergency service logistics applications across sectors, offering easy deployment and rapid response. In the context of emergency medical services (EMS), UAVs have the potential to augment ambulances by leveraging bystander assistance, thereby reducing response times for delivering urgent medical interventions and improving EMS outcomes. Notably, the use of UAVs for opioid overdose cases is particularly promising as it addresses the challenges faced by ambulances in delivering timely medication. This study aims to optimize the integration of UAVs and bystanders into EMS in order to minimize average response times for overdose interventions. Methodology/results: We formulate the joint operation of UAVs with ambulances through a Markov decision process that captures random emergency vehicle travel times and bystander availability. We apply an approximate dynamic programming approach to mitigate the solution challenges from high-dimensional state variables and complex decisions through a neural network-based approximation of the value functions (NN-API). To design the approximation, we construct a set of basis functions based on queueing and geographic properties of the UAV-augmented EMS system. Managerial implications: The simulation results suggest that our NN-API policy tends to outperform several noteworthy rule- and optimization-based benchmark policies in terms of accumulated rewards, particularly for situations that are primarily characterized by high request arrival rates and a limited number of available ambulances and UAVs. The results also demonstrate the benefits of incorporating UAVs into the EMS system and the effectiveness of an intelligent real-time operations strategy in addressing capacity shortages, which are often a problem in rural areas of the United States. Additionally, the results provide insights into specific contributions of each dispatching or redeployment strategy to overall performance improvement. Funding: This work was supported by the National Science [Grant 1761022]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0166
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洋洋发布了新的文献求助10
刚刚
轻松的鸵鸟完成签到,获得积分10
1秒前
heyunhua23完成签到,获得积分10
1秒前
1秒前
LOWRY发布了新的文献求助10
1秒前
情怀应助pc采纳,获得10
1秒前
激情的纲完成签到,获得积分10
2秒前
2秒前
zisu完成签到,获得积分10
2秒前
洪福齐天完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
搞怪不愁完成签到 ,获得积分10
4秒前
小烦同学完成签到,获得积分10
4秒前
4秒前
小蘑菇应助无语啦采纳,获得10
4秒前
上官若男应助wang采纳,获得10
5秒前
yyyfff应助yvyvyv采纳,获得10
5秒前
LXQ发布了新的文献求助10
5秒前
6秒前
6秒前
我是老大应助S179采纳,获得10
7秒前
7秒前
小麦完成签到,获得积分10
7秒前
7秒前
酷波er应助倒霉蛋采纳,获得10
8秒前
笨蛋研究生完成签到,获得积分10
8秒前
8秒前
will发布了新的文献求助10
8秒前
谨慎初曼完成签到,获得积分10
8秒前
9秒前
李克杨发布了新的文献求助10
9秒前
瘦瘦柠檬完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
34oi发布了新的文献求助10
10秒前
姚卓成完成签到,获得积分10
10秒前
10秒前
啦啦啦发布了新的文献求助10
11秒前
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663010
求助须知:如何正确求助?哪些是违规求助? 3223738
关于积分的说明 9753126
捐赠科研通 2933645
什么是DOI,文献DOI怎么找? 1606294
邀请新用户注册赠送积分活动 758404
科研通“疑难数据库(出版商)”最低求助积分说明 734792