光致发光
激发态
半最大全宽
量子效率
激子
量子产额
荧光
光化学
接受者
材料科学
电子顺磁共振
光电子学
化学
原子物理学
核磁共振
光学
物理
凝聚态物理
作者
Xiaoxian Song,Yufang Nie,Chao Jiang,Baoyan Liang,Jie Liang,Xuming Zhuang,Hai Bi,Yue Wang
标识
DOI:10.1016/j.orgel.2023.106973
摘要
Multiple resonance thermally activated delayed fluorescence (MR-TADF) materials attract much attention owing to their 100 % exciton utilization, high photoluminescence quantum yield (PLQY) and narrowband emission with high color purity. However, how to regulate the energy levels and lifetimes of excited states for long-wavelength and short delayed fluorescence lifetime MR-TADF materials is still a challenge. Herein, an electron acceptor unit of pyrimidine derivative is introduced with steric-hinerance effect. The emission spectrum of BN-DPP is red shifted with 15 nm and the full width at half maximum (FWHM) is even narrower of 20 nm compared with that of DtCZB. A yellow-green MR-TADF material, called BN-DPBQ, is fabricated by extended the conjugation. Moreover, the delayed fluorescence lifetime of BN-DPBQ is half of that of BN-DPP. The BN-DPP based devices exhibit greenish blue emission with peak locating at 494 nm and maximum external quantum efficiency (EQE) of 23.6 %. BN-DPBQ based ones show much red shifted spectrum with emission peak at 538 nm and maximum EQE of 20.3 %. The results indicate that introducing electron acceptor units with steric-hinerance effect and extending the conjugation of resonance skeleton are effective ways to regulate energy levels and lifetimes of excited states for MR-TADF.
科研通智能强力驱动
Strongly Powered by AbleSci AI