亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning from different multimedia representation formats: effects of prior knowledge

动画 计算机科学 绘图 多媒体 卓越 代表(政治) 基督教牧师 数学教育 心理学 哲学 计算机图形学(图像) 神学 政治 政治学 法学
作者
Chih‐Yi Hsu,Tzu‐Chien Liu,Yi-Chun Lin,Chung-Yuan Hsu,Fred Paas
出处
期刊:Journal of research on technology in education [Taylor & Francis]
卷期号:: 1-15
标识
DOI:10.1080/15391523.2023.2288393
摘要

AbstractWe investigated interaction effects of multimedia representation format and learner’s prior knowledge level on learning outcomes. Eighty-seven high school students with a lower or a higher level of physics prior knowledge learned about the operation of a nuclear power plant and the concepts of generating electricity by studying static graphics, an animation, or a simulation. Results indicated that the lower physics prior knowledge level students learned more from the animations than from the static graphics, and the simulation. However, learning outcomes of the higher physics prior knowledge level students did not differ between the three multimedia format conditions. The results suggest that the learner’s prior knowledge level should be considered when choosing an appropriate multimedia representation format, especially for students with low prior knowledge.Keywords: Multimedia representation formatprior knowledgecognitive loadanimationsimulation AcknowledgementsWe would like to thank the editor of the Journal of Research on Technology in Education and anonymous reviewers, who provided all the valuable comments and suggestions. Finally, we would like to thank all the people who helped us and supported this research. This research would not have been possible without them.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe authors received the financial support from National Science and Technology Council (NSTC) in Taiwan under Grant No. 108-2511-H-003-044-MY4 and Institute for Research Excellence in Learning Sciences of the National Taiwan Normal University from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education in Taiwan.Notes on contributorsChih-Yi HsuChih-Yi Hsu is a physics teacher at the National Tou-Liu Senior High School in Taiwan. He received his PhD in education from the University of New South Wales in Sydney, Australia. His research interests include cognitive load theory, multimedia learning, and science education.Tzu-Chien LiuTzu-Chien Liu is Chair Professor of the Department of Educational Psychology and Counseling, and Institute for Research Excellence in Learning Sciences at National Taiwan Normal University. Based on learning science and cognitive load theory, He is committed to the development of digital learning materials and platforms based on innovative technologies (e.g., VR, AR, mobile devices) to enhance learning effectiveness. Currently, he serves as the chief editor of Bulletin of Educational Psychology (Scopus), the associate editor of Journal of Research in Education Sciences (Scopus), and an editorial board member of Educational Psychology Review (SSCI).Yi-Chun LinYi-Chun Lin is Postdoctoral Research Fellow of the Department of Educational Psychology and Counseling, and Institute for Research Excellence in Learning Sciences at National Taiwan Normal University. She received her PhD in education from the National Central University in Taiwan. Her research interests include educational psychology, educational technology and learning and instruction.Chung-Yuan HsuChung-Yuan Hsu is a Professor at Department of Child Care, National Pingtung University of Science and Technology, Taiwan. His research interests focus on digital game-based learning, computational thinking, and computer-assisted science learning.Fred PaasFred Paas is professor of Educational Psychology at Erasmus University Rotterdam in the Netherlands and visiting professor at the University of New South Wales and the University of Wollongong in Australia. His research focuses on the management of cognitive load in learning environments using cognitive load theory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
袁青寒发布了新的文献求助10
37秒前
苹果完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
陶醉的蜜蜂完成签到,获得积分10
2分钟前
田様应助袁青寒采纳,获得10
2分钟前
英俊的铭应助袁青寒采纳,获得10
2分钟前
李健应助袁青寒采纳,获得10
2分钟前
直率的笑翠完成签到 ,获得积分10
3分钟前
fufufu123完成签到 ,获得积分10
3分钟前
3分钟前
deedee发布了新的文献求助10
3分钟前
kuoping完成签到,获得积分0
4分钟前
4分钟前
JIAO发布了新的文献求助10
4分钟前
宁幼萱完成签到,获得积分10
5分钟前
花落无声完成签到 ,获得积分10
6分钟前
6分钟前
HOPKINSON发布了新的文献求助10
6分钟前
6分钟前
袁青寒发布了新的文献求助10
7分钟前
CipherSage应助LiJie采纳,获得10
7分钟前
ZaZa完成签到,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
8分钟前
8分钟前
LiJie发布了新的文献求助10
8分钟前
袁青寒发布了新的文献求助10
8分钟前
袁青寒发布了新的文献求助10
8分钟前
袁青寒发布了新的文献求助10
8分钟前
LiJie完成签到,获得积分10
8分钟前
12345完成签到 ,获得积分10
8分钟前
胖小羊完成签到 ,获得积分10
9分钟前
e麓绝尘完成签到 ,获得积分10
9分钟前
狂野的含烟完成签到 ,获得积分10
9分钟前
可爱的大白菜真实的钥匙完成签到 ,获得积分10
9分钟前
吕佳完成签到 ,获得积分10
10分钟前
11分钟前
JamesPei应助科研通管家采纳,获得30
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4965074
求助须知:如何正确求助?哪些是违规求助? 4223863
关于积分的说明 13154826
捐赠科研通 4009420
什么是DOI,文献DOI怎么找? 2194371
邀请新用户注册赠送积分活动 1207938
关于科研通互助平台的介绍 1120953