材料科学
阳极
电化学
化学工程
吸附
阴极
电解质
储能
镍
钠离子电池
兴奋剂
电极
纳米技术
化学
光电子学
物理化学
热力学
冶金
物理
工程类
法拉第效率
功率(物理)
作者
Jing Liu,Juan Xie,Huilong Dong,Feilong Li,Kang Xu,Yue Li,Xiaowei Miao,Jun Yang,Hongbo Geng
标识
DOI:10.1016/j.jcis.2023.12.011
摘要
The key to the innovation of sodium-ion batteries (SIBs) is to find efficient sodium-storage electrode. Here, metal Mo doping of NiSe2 is proposed by modified electrospinning strategy followed by in situ conversion process. The Mo-NiSe2 anchoring on hollow carbon nanofibers (HCNFs) would make full use of the multi-channel HCNFs in the inner layer and the active sites of Mo-NiSe2 in the outer layer, which plays an important role in buffering the volume stress of Na+ (de)insertion and reducing the adsorption energy barrier of Na+. Innovatively, it is proposed to jointly regulate the SIBs performance of NiSe2 by both metal atom doping and interface effects, thereby adjusting the sodium ion adsorption barrier of NiSe2. The Mo-NiSe2@HCNFs exhibits remarkable performance in SIBs, demonstrating a high specific capacity of 396 mAh/g after 100 cycles at 1 A/g. Moreover, it maintains outstanding cycling stability, retaining 77.6 % of its capacity (211 mAh/g) even after 1000 cycles at 10 A/g. This comprehensive electrochemical performances are due to the structural stability and outstanding electronic conductance of the Mo-NiSe2@HCNFs, as evidenced by the diffusion analysis and ex situ charge–discharge process characterization. Furthermore, coupled with the Na3V2(PO4)2O2F cathodes, the full cell also achieves a high energy density of 123 Wh kg−1. The theoretical calculation of the hypervalent Mo doing further proves the benefit of its Na+ adsorption and denser conduction band distribution. This study provides a reference for the construction of transition metal selenide via doping and interface engineering in sodium storage.
科研通智能强力驱动
Strongly Powered by AbleSci AI