Optimizing safety barrier allocation to prevent domino effects in large-scale chemical clusters using graph theory and optimization algorithms

多米诺效应 亲密度 多米诺骨牌 计算机科学 分类 数学优化 遗传算法 还原(数学) 比例(比率) 算法 数学 机器学习 生物化学 化学 物理 量子力学 核物理学 催化作用 数学分析 几何学
作者
Muchen Zhang,Zelin Li,Shuya Hou,Shuwen Deng,Genserik Reniers,Ming Yang,Bin Zhang
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:184: 1192-1205
标识
DOI:10.1016/j.psep.2024.02.057
摘要

Domino effects are high-impact low-probability events that can have catastrophic consequences. To prevent and to reduce risks related to such events, safety barriers (SBs) are crucial. However, the initiation, propagation, and stopping processes of domino effects are characterized with complexity and uncertainties and hence they are unpredictable. This makes it challenging to allocate SBs based on predicted probabilities. In this study, a multi-objective optimization model which integrates graph theory with Non-dominated Sorting Genetic Algorithm II (NSGA-II) was proposed to allocate add-on SBs effectively. Graph metrics were used to quantify the escalation risks related to storage tanks and to optimize the allocation of add-on SBs, thereby minimizing the consequences of a domino effect under a budget constraint. The results of the case study demonstrate great efficiency in finding globally optimal strategies with a largest reduction of 94.3% in the out-closeness score due to the implementation of add-on SBs, allowing decision-makers to choose the most preferable investment strategy in face of domino effect risk. Our study therefore provides a novel approach to achieve an optimal allocation of add-on SBs globally and can be useful in preventing domino effects in large-scale chemical clusters equipped with a large number of storage tanks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助典雅的俊驰采纳,获得10
1秒前
111发布了新的文献求助10
1秒前
sunpacino完成签到,获得积分10
1秒前
烟花应助Mexsol采纳,获得10
2秒前
2秒前
zzz发布了新的文献求助10
3秒前
4秒前
4秒前
疑夕完成签到,获得积分10
6秒前
隐形衬衫发布了新的文献求助10
6秒前
arnoan完成签到,获得积分10
6秒前
lii完成签到,获得积分10
6秒前
6秒前
zzs完成签到,获得积分20
8秒前
8秒前
爆米花应助欧阳慧玲采纳,获得10
9秒前
ding应助YX采纳,获得10
9秒前
10秒前
大模型应助软软采纳,获得10
11秒前
Jasper应助laotianshu采纳,获得10
11秒前
14秒前
15秒前
风中的忆灵完成签到,获得积分10
15秒前
16秒前
17秒前
王m完成签到 ,获得积分10
17秒前
17秒前
永毅发布了新的文献求助10
18秒前
852应助cccc采纳,获得10
19秒前
怡然尔白完成签到,获得积分10
19秒前
982289172发布了新的文献求助10
20秒前
高大寒梦发布了新的文献求助10
20秒前
Ayna发布了新的文献求助10
21秒前
嘞是举仔应助soga采纳,获得20
21秒前
小y同学发布了新的文献求助10
21秒前
d叨叨鱼发布了新的文献求助10
23秒前
Chris发布了新的文献求助10
23秒前
科研通AI6应助shaco采纳,获得10
24秒前
24秒前
24秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049