A New Federated Learning Model for Host Intrusion Detection System Under Non-IID Data

寄主(生物学) 计算机科学 入侵检测系统 数据建模 数据挖掘 数据库 生态学 生物
作者
Wei Guo,Zhiwei Yao,Yongfei Liu,Lanxue Zhang,Liangxiong Li,Tong Li,Bingzhen Wu
标识
DOI:10.1109/smc53992.2023.10393972
摘要

Host Intrusion Detection System (HIDS) is an important research topic in the field of cyberspace security. With the explosion in the number of malicious attacks in recent years, machine learning-based detection method is now the most common and efficient approach. While traditional centralized machine learning needs to transmit data to the central server for training, which not only requires the central server to have large computing resources, but also causes problems such as sensitive data leakage and communication overhead. As a distributed machine learning paradigm, Federated Learning (FL) can achieve multi-party collaborative training and aggregate a unified global model without data sharing, which can well alleviate these problems. It is worth noting that existing studies on the use of FL in HIDS are all conducted in the scenario where the data is independent and identically distributed (IID). However, due to the different context of hosts, the data generated by hosts is usually non-independent and identically distributed (Non-IID) in reality. Therefore, We investigate the impact of Non-IID data with different skew levels on FL in HIDS. On this basis, we propose a data augmentation FL algorithm based on Synthetic Minority Over-Sampling Technique (SMOTE) to reduce the impact of Non-IID data. We also develop a data collection module using extended Berkeley Packet Filter (eBPF) technology to collect a dataset for experiments. Experimental results show that our proposed FL algorithm can effectively improve the performance of HIDS under Non-IID data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魏蒙完成签到,获得积分20
刚刚
bkagyin应助塵亦采纳,获得10
刚刚
无花果应助隐形半烟采纳,获得10
刚刚
袁姣完成签到,获得积分10
1秒前
蚂虾完成签到 ,获得积分10
2秒前
2秒前
小乔同学发布了新的文献求助10
4秒前
令狐凌波完成签到 ,获得积分10
4秒前
4秒前
Jana应助queer采纳,获得10
4秒前
5秒前
JamesPei应助怕孤独的盼波采纳,获得10
7秒前
无花果应助Weylai采纳,获得10
8秒前
8秒前
Stone发布了新的文献求助30
9秒前
孙小雨发布了新的文献求助10
9秒前
9秒前
11秒前
闻老头菊花碳完成签到,获得积分10
11秒前
情怀应助单纯的爆米花采纳,获得10
13秒前
14秒前
六六发布了新的文献求助10
14秒前
14秒前
美丽的凌蝶完成签到,获得积分10
15秒前
murmur完成签到,获得积分10
19秒前
白糖发布了新的文献求助30
19秒前
不安云朵发布了新的文献求助10
22秒前
YiXianCoA完成签到 ,获得积分10
23秒前
24秒前
24秒前
七斤文完成签到,获得积分10
25秒前
feng发布了新的文献求助10
25秒前
科目三应助微微采纳,获得10
25秒前
粗犷的碧灵完成签到,获得积分20
25秒前
25秒前
yangyog发布了新的文献求助20
25秒前
26秒前
英俊的铭应助随梦而飞采纳,获得10
27秒前
闻歌发布了新的文献求助10
28秒前
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455164
求助须知:如何正确求助?哪些是违规求助? 3050441
关于积分的说明 9021374
捐赠科研通 2739114
什么是DOI,文献DOI怎么找? 1502413
科研通“疑难数据库(出版商)”最低求助积分说明 694501
邀请新用户注册赠送积分活动 693293