A New Federated Learning Model for Host Intrusion Detection System Under Non-IID Data

寄主(生物学) 计算机科学 入侵检测系统 数据建模 数据挖掘 数据库 生态学 生物
作者
Wei Guo,Zhiwei Yao,Yongfei Liu,Lanxue Zhang,Liangxiong Li,Tong Li,Bingzhen Wu
标识
DOI:10.1109/smc53992.2023.10393972
摘要

Host Intrusion Detection System (HIDS) is an important research topic in the field of cyberspace security. With the explosion in the number of malicious attacks in recent years, machine learning-based detection method is now the most common and efficient approach. While traditional centralized machine learning needs to transmit data to the central server for training, which not only requires the central server to have large computing resources, but also causes problems such as sensitive data leakage and communication overhead. As a distributed machine learning paradigm, Federated Learning (FL) can achieve multi-party collaborative training and aggregate a unified global model without data sharing, which can well alleviate these problems. It is worth noting that existing studies on the use of FL in HIDS are all conducted in the scenario where the data is independent and identically distributed (IID). However, due to the different context of hosts, the data generated by hosts is usually non-independent and identically distributed (Non-IID) in reality. Therefore, We investigate the impact of Non-IID data with different skew levels on FL in HIDS. On this basis, we propose a data augmentation FL algorithm based on Synthetic Minority Over-Sampling Technique (SMOTE) to reduce the impact of Non-IID data. We also develop a data collection module using extended Berkeley Packet Filter (eBPF) technology to collect a dataset for experiments. Experimental results show that our proposed FL algorithm can effectively improve the performance of HIDS under Non-IID data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助PengHu采纳,获得10
1秒前
酷波er应助清新的不斜采纳,获得10
1秒前
自觉的黑夜完成签到,获得积分10
1秒前
2秒前
wergou发布了新的文献求助10
4秒前
4秒前
细心的若风完成签到,获得积分10
4秒前
yorkin完成签到 ,获得积分10
4秒前
Donby完成签到,获得积分10
5秒前
5秒前
qsy完成签到,获得积分10
5秒前
小狸跟你拼啦完成签到,获得积分10
5秒前
6秒前
害羞向日葵完成签到 ,获得积分10
6秒前
可可应助一朵采纳,获得10
6秒前
屁王完成签到,获得积分10
6秒前
燕燕完成签到,获得积分10
7秒前
尊敬寒松完成签到 ,获得积分10
7秒前
yiersan完成签到,获得积分10
8秒前
8秒前
Ava应助JIE采纳,获得10
8秒前
Tzh完成签到,获得积分10
8秒前
大吴克发布了新的文献求助10
9秒前
怡然剑成完成签到 ,获得积分10
9秒前
九月完成签到,获得积分10
10秒前
10秒前
VV完成签到,获得积分10
10秒前
666完成签到,获得积分10
10秒前
1235发布了新的文献求助10
11秒前
11秒前
12秒前
晓凡完成签到,获得积分10
12秒前
科研通AI5应助linkman采纳,获得10
12秒前
今后应助linkman采纳,获得30
12秒前
土豪的铭完成签到,获得积分10
12秒前
威武的皮卡丘完成签到,获得积分10
12秒前
ljx完成签到 ,获得积分10
13秒前
biomds完成签到,获得积分10
13秒前
李雪松完成签到 ,获得积分10
13秒前
西早完成签到 ,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968719
求助须知:如何正确求助?哪些是违规求助? 3513608
关于积分的说明 11168681
捐赠科研通 3248960
什么是DOI,文献DOI怎么找? 1794573
邀请新用户注册赠送积分活动 875194
科研通“疑难数据库(出版商)”最低求助积分说明 804716