已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A New Federated Learning Model for Host Intrusion Detection System Under Non-IID Data

寄主(生物学) 计算机科学 入侵检测系统 数据建模 数据挖掘 数据库 生态学 生物
作者
Wei Guo,Zhiwei Yao,Yongfei Liu,Lanxue Zhang,Liangxiong Li,Tong Li,Bingzhen Wu
标识
DOI:10.1109/smc53992.2023.10393972
摘要

Host Intrusion Detection System (HIDS) is an important research topic in the field of cyberspace security. With the explosion in the number of malicious attacks in recent years, machine learning-based detection method is now the most common and efficient approach. While traditional centralized machine learning needs to transmit data to the central server for training, which not only requires the central server to have large computing resources, but also causes problems such as sensitive data leakage and communication overhead. As a distributed machine learning paradigm, Federated Learning (FL) can achieve multi-party collaborative training and aggregate a unified global model without data sharing, which can well alleviate these problems. It is worth noting that existing studies on the use of FL in HIDS are all conducted in the scenario where the data is independent and identically distributed (IID). However, due to the different context of hosts, the data generated by hosts is usually non-independent and identically distributed (Non-IID) in reality. Therefore, We investigate the impact of Non-IID data with different skew levels on FL in HIDS. On this basis, we propose a data augmentation FL algorithm based on Synthetic Minority Over-Sampling Technique (SMOTE) to reduce the impact of Non-IID data. We also develop a data collection module using extended Berkeley Packet Filter (eBPF) technology to collect a dataset for experiments. Experimental results show that our proposed FL algorithm can effectively improve the performance of HIDS under Non-IID data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱学习的YY完成签到 ,获得积分10
刚刚
小超人完成签到,获得积分10
5秒前
NEO完成签到 ,获得积分10
6秒前
科研路人锋完成签到 ,获得积分10
7秒前
旺仔完成签到,获得积分10
7秒前
阿司匹林完成签到 ,获得积分10
7秒前
9秒前
10秒前
11秒前
丘比特应助susu采纳,获得10
11秒前
FashionBoy应助lQ采纳,获得10
11秒前
niu发布了新的文献求助10
14秒前
大笨鹅之家完成签到 ,获得积分10
16秒前
junyang发布了新的文献求助10
17秒前
fengfenghao完成签到,获得积分10
20秒前
22秒前
SciGPT应助科研顺利啦采纳,获得10
27秒前
牙线棒棒哒完成签到 ,获得积分10
28秒前
liwu完成签到 ,获得积分10
28秒前
29秒前
Linson完成签到,获得积分0
30秒前
失眠呆呆鱼完成签到 ,获得积分10
30秒前
明朗完成签到 ,获得积分10
31秒前
czh应助dinner采纳,获得10
31秒前
学术djw完成签到,获得积分10
32秒前
三水发布了新的文献求助10
32秒前
彭于晏应助科研通管家采纳,获得10
33秒前
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
33秒前
斯文败类应助科研通管家采纳,获得10
33秒前
量子星尘发布了新的文献求助10
35秒前
旺仔发布了新的文献求助10
37秒前
40秒前
44秒前
洁净雨柏发布了新的文献求助30
45秒前
ypyue完成签到,获得积分10
48秒前
知足的憨人*-*完成签到,获得积分10
48秒前
49秒前
susu发布了新的文献求助10
49秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520674
关于积分的说明 11204470
捐赠科研通 3257316
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877861
科研通“疑难数据库(出版商)”最低求助积分说明 806595