CA-GAN: Conditional Adaptive Generative Adversarial Network for Text-to-Image Synthesis

计算机科学 生成语法 生成对抗网络 对抗制 人工智能 图像(数学) 模式识别(心理学) 理论计算机科学
作者
Junpeng Liu,Hengkang Bao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 299-312
标识
DOI:10.1007/978-3-031-53311-2_22
摘要

Text-to-image synthesis has been a popular multimodal task in recent years, which faces two major challenges: the semantic consistency and the fine-grained information loss. Existing methods mostly adopt either a multi-stage stacked architecture or a single-stream model with several affine transformations as the fusion block. The former requires additional networks to ensure the semantic consistency between text and image, which is complex and results in poor generation quality. The latter simply extracts affine transformation from Conditional Batch Normalization (CBN), which can not match text features well. To address these issues, we propose an effective Conditional Adaptive Generative Adversarial Network. Our proposed method (i.e., CA-GAN) adopts a single-stream network architecture, consisting of a single generator/discriminator pair. To be specific, we propose: (1) a conditional adaptive instance normalization residual block which promotes the generator to synthesize high quality images containing semantic information; (2) an attention block that focuses on image-related channels and pixels. We conduct extensive experiments on CUB and COCO datasets, and the results show the superiority of the proposed CA-GAN in text-to-image synthesis tasks compared with previous methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助科研通管家采纳,获得10
刚刚
欣喜豌豆完成签到,获得积分10
刚刚
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
朵颜三卫发布了新的文献求助10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
cocolu应助科研通管家采纳,获得10
1秒前
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
2秒前
haha发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
Wzh完成签到,获得积分10
3秒前
4秒前
120hgp完成签到,获得积分10
4秒前
kun发布了新的文献求助10
4秒前
科研通AI2S应助白方明采纳,获得10
5秒前
热心市民蚂蚱殿下完成签到,获得积分10
5秒前
6秒前
FashionBoy应助帆帆帆采纳,获得10
6秒前
lyj发布了新的文献求助10
6秒前
乐乐应助蝈蝈采纳,获得30
6秒前
7秒前
clay_park完成签到,获得积分10
7秒前
狂野乌冬面完成签到 ,获得积分10
7秒前
9秒前
10秒前
糊涂的寒蕾完成签到,获得积分10
10秒前
AswinnLyu完成签到,获得积分10
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305036
求助须知:如何正确求助?哪些是违规求助? 2938975
关于积分的说明 8490811
捐赠科研通 2613426
什么是DOI,文献DOI怎么找? 1427420
科研通“疑难数据库(出版商)”最低求助积分说明 662969
邀请新用户注册赠送积分活动 647614