Attention-Based Policy Distillation for UAV Simultaneous Target Tracking and Obstacle Avoidance

避碰 计算机科学 强化学习 避障 障碍物 一般化 任务(项目管理) 人工智能 光学(聚焦) 跟踪(教育) 碰撞 机器人 移动机器人 工程类 计算机安全 数学 心理学 数学分析 教育学 物理 系统工程 光学 政治学 法学
作者
Lele Xu,Teng Wang,Jiawei Wang,Jian Liu,Changyin Sun
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 3768-3781 被引量:2
标识
DOI:10.1109/tiv.2023.3342174
摘要

Nowadays, deep reinforcement learning (DRL) has made remarkable achievements in the research of unmanned aerial vehicle (UAV) applications. However, much of the current research on UAVs focuses on a single task, which limits its applicability in many scenarios. Therefore, we have conducted research on UAV target tracking and obstacle avoidance tasks. The DRL-based solutions integrate the objectives of multi-tasks into a common reward function making the training unstable and difficult to converge, resulting in the loss of objectives or collisions. To that end, we propose a novel target following and obstacle avoidance solution based on policy distillation of the task attention mechanism. First, we train the two tasks of UAV target following and UAV obstacle avoidance respectively. Both networks are trained using Dueling Double Deep Q Network to learn the corresponding policy in an end-to-end manner. Then we extract the two policies that have been trained separately into a memory buffer. Meanwhile, we can perceive the collision risk through the state of the current environment of the UAV to assign the weights of the two tasks in the attention mechanism. Therefore, our method can adaptively focus on the corresponding tasks according to the current state. We conducted simulation experiments using the Virtual Robot Experimentation Platform. Our study presents compelling experimental findings: (1) Our novel approach outperforms state-of-the-art methods by achieving superior tracking accuracy and extended tracking durations across diverse environments, all while mitigating collision incidents. (2) The distilled policy we have developed exhibits robust generalization capabilities when applied to previously unencountered environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尤其完成签到,获得积分10
2秒前
小温w发布了新的文献求助10
2秒前
4秒前
shishkintree完成签到 ,获得积分10
4秒前
顶刊_发布了新的文献求助10
5秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
小青椒应助科研通管家采纳,获得60
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
7秒前
NiL应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
龅牙苏应助kelly9110采纳,获得10
8秒前
单单来迟完成签到,获得积分10
9秒前
陈好完成签到,获得积分10
10秒前
10秒前
12秒前
12秒前
假面绅士发布了新的文献求助10
13秒前
李爱国应助专注月亮采纳,获得10
14秒前
困鼠了发布了新的文献求助10
14秒前
23333完成签到 ,获得积分10
15秒前
15秒前
lll关闭了lll文献求助
17秒前
17秒前
温柔的向南完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425184
求助须知:如何正确求助?哪些是违规求助? 4539282
关于积分的说明 14166597
捐赠科研通 4456440
什么是DOI,文献DOI怎么找? 2444204
邀请新用户注册赠送积分活动 1435246
关于科研通互助平台的介绍 1412568