Attention-Based Policy Distillation for UAV Simultaneous Target Tracking and Obstacle Avoidance

避碰 计算机科学 强化学习 避障 障碍物 一般化 任务(项目管理) 人工智能 光学(聚焦) 跟踪(教育) 碰撞 机器人 移动机器人 工程类 计算机安全 数学 物理 光学 数学分析 法学 系统工程 教育学 政治学 心理学
作者
Lele Xu,Teng Wang,Jiawei Wang,Jian Liu,Changyin Sun
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 3768-3781 被引量:2
标识
DOI:10.1109/tiv.2023.3342174
摘要

Nowadays, deep reinforcement learning (DRL) has made remarkable achievements in the research of unmanned aerial vehicle (UAV) applications. However, much of the current research on UAVs focuses on a single task, which limits its applicability in many scenarios. Therefore, we have conducted research on UAV target tracking and obstacle avoidance tasks. The DRL-based solutions integrate the objectives of multi-tasks into a common reward function making the training unstable and difficult to converge, resulting in the loss of objectives or collisions. To that end, we propose a novel target following and obstacle avoidance solution based on policy distillation of the task attention mechanism. First, we train the two tasks of UAV target following and UAV obstacle avoidance respectively. Both networks are trained using Dueling Double Deep Q Network to learn the corresponding policy in an end-to-end manner. Then we extract the two policies that have been trained separately into a memory buffer. Meanwhile, we can perceive the collision risk through the state of the current environment of the UAV to assign the weights of the two tasks in the attention mechanism. Therefore, our method can adaptively focus on the corresponding tasks according to the current state. We conducted simulation experiments using the Virtual Robot Experimentation Platform. Our study presents compelling experimental findings: (1) Our novel approach outperforms state-of-the-art methods by achieving superior tracking accuracy and extended tracking durations across diverse environments, all while mitigating collision incidents. (2) The distilled policy we have developed exhibits robust generalization capabilities when applied to previously unencountered environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助L1230采纳,获得150
刚刚
wang发布了新的文献求助10
2秒前
2秒前
ding应助puchang007采纳,获得10
2秒前
悄悄完成签到,获得积分10
2秒前
leey发布了新的文献求助10
3秒前
yuanvv发布了新的文献求助10
3秒前
wsqg123发布了新的文献求助10
3秒前
3秒前
江北发布了新的文献求助10
3秒前
李爱国应助友好胡萝卜采纳,获得10
3秒前
科研通AI6应助景飞丹采纳,获得10
3秒前
Jared应助絮1111采纳,获得10
4秒前
Yume完成签到,获得积分10
4秒前
4秒前
4秒前
张璐完成签到,获得积分20
4秒前
4秒前
5秒前
hao关闭了hao文献求助
5秒前
CipherSage应助李李采纳,获得10
7秒前
ranan完成签到,获得积分10
7秒前
7秒前
小芳完成签到,获得积分10
7秒前
英吉利25发布了新的文献求助10
7秒前
8秒前
8秒前
爱笑寒凝发布了新的文献求助10
9秒前
fyy发布了新的文献求助10
9秒前
Ava应助寒冷又晴采纳,获得10
9秒前
上官若男应助过过过采纳,获得10
9秒前
酷波er应助PG采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
李楠完成签到,获得积分20
10秒前
11秒前
ZIS发布了新的文献求助10
11秒前
七七七发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609726
求助须知:如何正确求助?哪些是违规求助? 4694294
关于积分的说明 14881987
捐赠科研通 4720227
什么是DOI,文献DOI怎么找? 2544836
邀请新用户注册赠送积分活动 1509735
关于科研通互助平台的介绍 1472996