Attention-Based Policy Distillation for UAV Simultaneous Target Tracking and Obstacle Avoidance

避碰 计算机科学 强化学习 避障 障碍物 一般化 任务(项目管理) 人工智能 光学(聚焦) 跟踪(教育) 碰撞 机器人 移动机器人 工程类 计算机安全 数学 心理学 数学分析 教育学 物理 系统工程 光学 政治学 法学
作者
Lele Xu,Teng Wang,Jiawei Wang,Jian Liu,Changyin Sun
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 3768-3781 被引量:2
标识
DOI:10.1109/tiv.2023.3342174
摘要

Nowadays, deep reinforcement learning (DRL) has made remarkable achievements in the research of unmanned aerial vehicle (UAV) applications. However, much of the current research on UAVs focuses on a single task, which limits its applicability in many scenarios. Therefore, we have conducted research on UAV target tracking and obstacle avoidance tasks. The DRL-based solutions integrate the objectives of multi-tasks into a common reward function making the training unstable and difficult to converge, resulting in the loss of objectives or collisions. To that end, we propose a novel target following and obstacle avoidance solution based on policy distillation of the task attention mechanism. First, we train the two tasks of UAV target following and UAV obstacle avoidance respectively. Both networks are trained using Dueling Double Deep Q Network to learn the corresponding policy in an end-to-end manner. Then we extract the two policies that have been trained separately into a memory buffer. Meanwhile, we can perceive the collision risk through the state of the current environment of the UAV to assign the weights of the two tasks in the attention mechanism. Therefore, our method can adaptively focus on the corresponding tasks according to the current state. We conducted simulation experiments using the Virtual Robot Experimentation Platform. Our study presents compelling experimental findings: (1) Our novel approach outperforms state-of-the-art methods by achieving superior tracking accuracy and extended tracking durations across diverse environments, all while mitigating collision incidents. (2) The distilled policy we have developed exhibits robust generalization capabilities when applied to previously unencountered environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
关中大侠的涮肉坊完成签到,获得积分10
2秒前
2秒前
肚子好e啊完成签到 ,获得积分10
3秒前
夜神月发布了新的文献求助10
4秒前
Genius完成签到,获得积分10
4秒前
5秒前
英姑应助亦玉采纳,获得10
5秒前
wdddr发布了新的文献求助10
7秒前
Davidjun完成签到,获得积分10
7秒前
8秒前
8秒前
王乾宇完成签到,获得积分10
9秒前
9秒前
科研通AI2S应助很好采纳,获得10
10秒前
嘻嘻哈哈应助Tutu采纳,获得10
12秒前
彭于晏应助zhang采纳,获得10
12秒前
Peyton Why完成签到,获得积分10
12秒前
12秒前
浮游应助年轻的绿凝采纳,获得30
12秒前
CodeCraft应助森葵采纳,获得10
13秒前
13秒前
浮游应助瓜瓜采纳,获得10
14秒前
16秒前
最佳发布了新的文献求助30
16秒前
16秒前
清欢昌丽发布了新的文献求助10
16秒前
共享精神应助huangduanku采纳,获得10
16秒前
17秒前
18秒前
duyuqing完成签到 ,获得积分10
18秒前
CDQ完成签到,获得积分10
20秒前
sly完成签到,获得积分10
21秒前
21秒前
木沐发布了新的文献求助10
21秒前
Orange应助尊敬谷波采纳,获得10
21秒前
22秒前
琪琪发布了新的文献求助10
23秒前
小号完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308512
求助须知:如何正确求助?哪些是违规求助? 4453661
关于积分的说明 13857726
捐赠科研通 4341377
什么是DOI,文献DOI怎么找? 2383861
邀请新用户注册赠送积分活动 1378491
关于科研通互助平台的介绍 1346482