FedAFR: Enhancing Federated Learning with adaptive feature reconstruction

计算机科学 联合学习 一般化 特征(语言学) 人工智能 机器学习 趋同(经济学) 独立同分布随机变量 数据挖掘 数学分析 语言学 哲学 统计 数学 随机变量 经济 经济增长
作者
Youxin Huang,Shunzhi Zhu,Weizhe Chen,Zhicai Huang
出处
期刊:Computer Communications [Elsevier]
卷期号:214: 215-222 被引量:1
标识
DOI:10.1016/j.comcom.2023.12.007
摘要

Federated learning is a distributed machine learning method where clients train models on local data to ensure that data will not be transmitted to a central server, providing unique advantages in privacy protection. However, in real-world scenarios, data between different clients may be non-Independently and Identically Distributed (non-IID) and imbalanced, leading to discrepancies among local models and impacting the efficacy of global model aggregation. To tackle this issue, this paper proposes a novel framework, FedARF, designed to improve Federated Learning performance by adaptively reconstructing local features during training. FedARF offers a simple reconstruction module for aligning feature representations from various clients, thereby enhancing the generalization capability of cross-client aggregated models. Additionally, to better adapt the model to each client's data distribution, FedARF employs an adaptive feature fusion strategy for a more effective blending of global and local model information, augmenting the model's accuracy and generalization performance. Experimental results demonstrate that our proposed Federated Learning method significantly outperforms existing methods in variety image classification tasks, achieving faster model convergence and superior performance when dealing with non-IID data distributions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
取昵称好难完成签到,获得积分10
1秒前
苗条的语海完成签到,获得积分10
1秒前
1秒前
好旺完成签到,获得积分10
1秒前
田様应助雷123采纳,获得10
1秒前
SciGPT应助哈牛柚子鹿采纳,获得10
1秒前
Lillianzhu1完成签到,获得积分10
2秒前
万能图书馆应助Brief采纳,获得200
2秒前
静仰星空发布了新的文献求助20
2秒前
陶醉的又夏完成签到 ,获得积分10
2秒前
打打应助bk采纳,获得10
2秒前
2秒前
2秒前
zee完成签到,获得积分10
2秒前
2秒前
cccchen发布了新的文献求助10
2秒前
离开时是天命完成签到,获得积分10
2秒前
今后应助帅气诗槐采纳,获得10
3秒前
3秒前
Cindy发布了新的文献求助10
3秒前
隐形曼青应助木子采纳,获得10
3秒前
yao完成签到,获得积分10
3秒前
心灵美砖头完成签到,获得积分10
3秒前
xz发布了新的文献求助10
3秒前
兮豫完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
爆米花应助daytoy采纳,获得10
6秒前
HRC发布了新的文献求助10
6秒前
asdfqwer应助勤恳的眼神采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
Hanoi347应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得50
7秒前
婉妤完成签到 ,获得积分10
7秒前
知鸢完成签到,获得积分10
7秒前
梓辰完成签到 ,获得积分10
7秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585217
求助须知:如何正确求助?哪些是违规求助? 4669042
关于积分的说明 14774554
捐赠科研通 4617220
什么是DOI,文献DOI怎么找? 2530423
邀请新用户注册赠送积分活动 1499182
关于科研通互助平台的介绍 1467659