催化作用
电化学
选择性
密度泛函理论
氧化还原
化学工程
材料科学
可逆氢电极
拉曼光谱
过渡金属
无机化学
电极
化学
物理化学
计算化学
工作电极
有机化学
光学
物理
工程类
作者
Chunge Li,Juncai Wei,Ruobing Feng,Chao Lu,Huiyu Wang,Fang-Yi Su,Guoxia Wang,Yuzhen Yang
出处
期刊:International Journal of Electrochemical Science
[ESG]
日期:2023-12-13
卷期号:19 (1): 100439-100439
标识
DOI:10.1016/j.ijoes.2023.100439
摘要
The electro-reduction of CO2 to C2+ products has received a lot of attention because it provides a pathway to obtain feedstocks and fuels by renewable electricity. It is well known that Cu-based catalysts are selective for C2+ products, although the catalytic mechanism of its surface structure is not fully understood. Therefore, we procured Cu2O nanocubes via a wet chemical reduction approach, and then Cu2O/Cu catalyst was in-situ generated during the electro-catalytic CO2 reduction reaction (CO2RR). The electrochemical properties of Cu2O/Cu catalyst are better than those of Cu catalyst. In particular, the selectivity of Cu2O/Cu catalyst for C2+ products is 55.9%, which is approximately 67% higher than that of Cu catalyst at the optimal catalytic voltage of –1.1 V versus reversible hydrogen electrode (RHE). In addition, the stability of Cu2O/Cu catalyst is up to 30 h, and the catalytic current density is significantly higher than that of Cu catalyst. Using in-situ Raman spectroscopy, the signal peaks of transition state intermediates (*CO–Cu and CO) of Cu2O/Cu catalyst are stronger than those of Cu catalyst during CO2RR. Density function theory (DFT) calculations suggest that the good electrochemical performance is associated with the Cu2O/Cu interfaces, which significantly improves the thermodynamics and kinetics of CO2 activation and CO dimerization. This study provides a simple approach for improving catalytic performance and will advance the understanding of the role of the Cu2O/Cu interfaces in CO2RR.
科研通智能强力驱动
Strongly Powered by AbleSci AI