In-situ Cu2O/Cu interfaces generation on Cu2O nanocubes toward enhanced C2+ selectivity

催化作用 电化学 选择性 密度泛函理论 氧化还原 化学工程 材料科学 可逆氢电极 拉曼光谱 过渡金属 无机化学 电极 化学 物理化学 计算化学 工作电极 有机化学 物理 光学 工程类
作者
Chunge Li,Juncai Wei,Ruobing Feng,Chao Lu,Huiyu Wang,Fang-Yi Su,Guoxia Wang,Yuzhen Yang
出处
期刊:International Journal of Electrochemical Science [ESG]
卷期号:19 (1): 100439-100439
标识
DOI:10.1016/j.ijoes.2023.100439
摘要

The electro-reduction of CO2 to C2+ products has received a lot of attention because it provides a pathway to obtain feedstocks and fuels by renewable electricity. It is well known that Cu-based catalysts are selective for C2+ products, although the catalytic mechanism of its surface structure is not fully understood. Therefore, we procured Cu2O nanocubes via a wet chemical reduction approach, and then Cu2O/Cu catalyst was in-situ generated during the electro-catalytic CO2 reduction reaction (CO2RR). The electrochemical properties of Cu2O/Cu catalyst are better than those of Cu catalyst. In particular, the selectivity of Cu2O/Cu catalyst for C2+ products is 55.9%, which is approximately 67% higher than that of Cu catalyst at the optimal catalytic voltage of –1.1 V versus reversible hydrogen electrode (RHE). In addition, the stability of Cu2O/Cu catalyst is up to 30 h, and the catalytic current density is significantly higher than that of Cu catalyst. Using in-situ Raman spectroscopy, the signal peaks of transition state intermediates (*CO–Cu and CO) of Cu2O/Cu catalyst are stronger than those of Cu catalyst during CO2RR. Density function theory (DFT) calculations suggest that the good electrochemical performance is associated with the Cu2O/Cu interfaces, which significantly improves the thermodynamics and kinetics of CO2 activation and CO dimerization. This study provides a simple approach for improving catalytic performance and will advance the understanding of the role of the Cu2O/Cu interfaces in CO2RR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
饱满太阳完成签到 ,获得积分10
2秒前
橙子发布了新的文献求助10
2秒前
2秒前
xy发布了新的文献求助10
4秒前
4秒前
伶俐的星月完成签到,获得积分10
5秒前
小二郎应助Horizon采纳,获得10
5秒前
5秒前
lzx完成签到,获得积分10
6秒前
6秒前
小蘑菇应助若米采纳,获得10
6秒前
Georges-09完成签到,获得积分10
7秒前
小马甲应助实验顺利采纳,获得10
7秒前
吴迪发布了新的文献求助10
7秒前
雁过留声完成签到,获得积分10
7秒前
8秒前
brouf完成签到 ,获得积分10
8秒前
个性的荆发布了新的文献求助10
9秒前
llf应助独特的追命采纳,获得20
9秒前
10秒前
满意语芙发布了新的文献求助10
11秒前
12秒前
12秒前
豆豆完成签到,获得积分10
12秒前
wang5945发布了新的文献求助10
13秒前
颖123发布了新的文献求助30
13秒前
apong发布了新的文献求助10
14秒前
14秒前
zzr完成签到 ,获得积分10
14秒前
15秒前
15秒前
16秒前
16秒前
16秒前
渡月桥完成签到,获得积分10
16秒前
田大明发布了新的文献求助10
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901