特质
差异(会计)
一致性(知识库)
可靠性(半导体)
计量经济学
统计
心理学
数学
认知心理学
计算机科学
人工智能
功率(物理)
物理
会计
量子力学
业务
程序设计语言
出处
期刊:Handbook of Statistics
日期:2023-01-01
标识
DOI:10.1016/bs.host.2023.10.002
摘要
Latent state-trait (LST) models allow researchers to separate person-specific sources of variability from situation-specific variance and random measurement error variance. In this chapter, I review the fundamental concepts of LST theory (Steyer et al., 2015) and discuss two prototypical LST models that can be used to determine consistency, occasion-specificity, reliability, and indicator-specificity in empirical data. I present an application to spatial ability test data from two measurement occasions (N = 519). In the discussion, I highlight extensions of LST approaches to other longitudinal research questions, including those related to the convergent validity of multiple raters, the question of variability versus trait change, and the study of specific fixed situations.
科研通智能强力驱动
Strongly Powered by AbleSci AI