A novel mechanical fault diagnosis for high-voltage circuit breakers with zero-shot learning

断层(地质) 计算机科学 卷积神经网络 人工智能 断路器 陷入故障 模式识别(心理学) 算法 机器学习 故障检测与隔离 工程类 执行机构 电气工程 地质学 地震学
作者
Qiuyu Yang,Yuxiang Liao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:245: 123133-123133 被引量:12
标识
DOI:10.1016/j.eswa.2023.123133
摘要

In recent years, data-driven methods have been widely used in the field of high-voltage circuit breakers (HVCBs) fault diagnosis. However, due to the complex mechanical structure of HVCBs and the special operating environment, it is difficult to obtain a large amount of fault samples and exhaust all fault types. The lack of fault samples and fault types typically results in significant degradation of diagnostic performance. To address this problem, we design a novel method named R-MLL for zero-shot HVCB fault diagnosis. R-MLL tries to identify unseen fault types only by training seen fault types. First, to focus on all the details of the HVCB mechanical vibration signal, the wavelet transform is used to multi-scale refine the fault data. Second, a new network (RDSCNN) is designed to extract multidimensional features based on convolutional neural network incorporating residual block and depthwise separable convolution. Third, a multi-label attribute learning network is designed, enabling the fusion of fault features and attributes and allowing attribute labels to assist fault diagnosis tasks. Extensive experiments show that R-MLL gets average accuracy of 86.2% for compound fault diagnosis without the need of using target fault samples for building the diagnostic model. Comparisons with a number of state-of-the-art techniques show the superiority of the proposed method for zero-shot HVCB diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谷粱靖完成签到,获得积分10
刚刚
文龙完成签到 ,获得积分10
刚刚
求知完成签到,获得积分10
1秒前
HaohaoLi发布了新的文献求助10
2秒前
CipherSage应助鲍建芳采纳,获得30
3秒前
mss12138完成签到,获得积分10
4秒前
None完成签到,获得积分10
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
周新运完成签到,获得积分10
6秒前
雍不斜发布了新的文献求助10
6秒前
6秒前
明理的南风完成签到,获得积分10
7秒前
qcl完成签到,获得积分10
7秒前
安然无恙完成签到,获得积分10
7秒前
半夏完成签到,获得积分10
8秒前
玉鱼儿完成签到 ,获得积分10
8秒前
lf-leo完成签到,获得积分10
9秒前
Hello应助nyfz2002采纳,获得10
9秒前
Dandy发布了新的文献求助10
10秒前
大个应助科研通管家采纳,获得10
11秒前
lizhaoyu应助科研通管家采纳,获得10
11秒前
lizhaoyu应助科研通管家采纳,获得10
11秒前
沛沛完成签到,获得积分10
11秒前
lizhaoyu应助科研通管家采纳,获得10
11秒前
lizhaoyu应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
DijiaXu应助科研通管家采纳,获得10
11秒前
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得50
12秒前
ding应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
12秒前
传奇3应助科研狗采纳,获得10
12秒前
Serendiply完成签到,获得积分10
13秒前
13秒前
dola完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015859
求助须知:如何正确求助?哪些是违规求助? 3555835
关于积分的说明 11318981
捐赠科研通 3288954
什么是DOI,文献DOI怎么找? 1812355
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027