A novel mechanical fault diagnosis for high-voltage circuit breakers with zero-shot learning

断层(地质) 计算机科学 卷积神经网络 人工智能 断路器 陷入故障 模式识别(心理学) 算法 机器学习 故障检测与隔离 工程类 执行机构 电气工程 地震学 地质学
作者
Qiuyu Yang,Yuxiang Liao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:245: 123133-123133 被引量:12
标识
DOI:10.1016/j.eswa.2023.123133
摘要

In recent years, data-driven methods have been widely used in the field of high-voltage circuit breakers (HVCBs) fault diagnosis. However, due to the complex mechanical structure of HVCBs and the special operating environment, it is difficult to obtain a large amount of fault samples and exhaust all fault types. The lack of fault samples and fault types typically results in significant degradation of diagnostic performance. To address this problem, we design a novel method named R-MLL for zero-shot HVCB fault diagnosis. R-MLL tries to identify unseen fault types only by training seen fault types. First, to focus on all the details of the HVCB mechanical vibration signal, the wavelet transform is used to multi-scale refine the fault data. Second, a new network (RDSCNN) is designed to extract multidimensional features based on convolutional neural network incorporating residual block and depthwise separable convolution. Third, a multi-label attribute learning network is designed, enabling the fusion of fault features and attributes and allowing attribute labels to assist fault diagnosis tasks. Extensive experiments show that R-MLL gets average accuracy of 86.2% for compound fault diagnosis without the need of using target fault samples for building the diagnostic model. Comparisons with a number of state-of-the-art techniques show the superiority of the proposed method for zero-shot HVCB diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的稚晴完成签到,获得积分20
刚刚
进击的PhD完成签到,获得积分10
1秒前
2秒前
单纯无声完成签到 ,获得积分10
2秒前
4秒前
西西弗斯完成签到,获得积分10
6秒前
李卓航发布了新的文献求助10
8秒前
领导范儿应助甜野采纳,获得10
8秒前
8秒前
10秒前
12秒前
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
好好应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
好好应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
14秒前
好好应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
dew应助科研通管家采纳,获得50
14秒前
FU发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716