A novel mechanical fault diagnosis for high-voltage circuit breakers with zero-shot learning

断层(地质) 计算机科学 卷积神经网络 人工智能 断路器 陷入故障 模式识别(心理学) 算法 机器学习 故障检测与隔离 工程类 执行机构 电气工程 地震学 地质学
作者
Qiuyu Yang,Yuxiang Liao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:245: 123133-123133 被引量:12
标识
DOI:10.1016/j.eswa.2023.123133
摘要

In recent years, data-driven methods have been widely used in the field of high-voltage circuit breakers (HVCBs) fault diagnosis. However, due to the complex mechanical structure of HVCBs and the special operating environment, it is difficult to obtain a large amount of fault samples and exhaust all fault types. The lack of fault samples and fault types typically results in significant degradation of diagnostic performance. To address this problem, we design a novel method named R-MLL for zero-shot HVCB fault diagnosis. R-MLL tries to identify unseen fault types only by training seen fault types. First, to focus on all the details of the HVCB mechanical vibration signal, the wavelet transform is used to multi-scale refine the fault data. Second, a new network (RDSCNN) is designed to extract multidimensional features based on convolutional neural network incorporating residual block and depthwise separable convolution. Third, a multi-label attribute learning network is designed, enabling the fusion of fault features and attributes and allowing attribute labels to assist fault diagnosis tasks. Extensive experiments show that R-MLL gets average accuracy of 86.2% for compound fault diagnosis without the need of using target fault samples for building the diagnostic model. Comparisons with a number of state-of-the-art techniques show the superiority of the proposed method for zero-shot HVCB diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助苏silence采纳,获得10
刚刚
FashionBoy应助燕天与采纳,获得10
刚刚
留胡子的霖完成签到,获得积分10
刚刚
garden发布了新的文献求助10
1秒前
舒服的井完成签到,获得积分10
1秒前
1秒前
Sukey完成签到,获得积分10
1秒前
1秒前
蓝蜗牛完成签到,获得积分10
1秒前
李学完成签到,获得积分10
1秒前
温梦花雨完成签到 ,获得积分10
1秒前
2秒前
2秒前
CodeCraft应助平常亦凝采纳,获得10
2秒前
加油冲完成签到,获得积分10
2秒前
3秒前
今后应助Ryubot采纳,获得10
3秒前
3秒前
Kamal完成签到,获得积分10
3秒前
0110完成签到,获得积分10
3秒前
天涯发布了新的文献求助10
4秒前
4秒前
李爱国应助邹咕噜采纳,获得10
4秒前
4秒前
5秒前
完美世界应助CVEN采纳,获得10
5秒前
zch发布了新的文献求助10
5秒前
上官若男应助soga采纳,获得10
5秒前
111发布了新的文献求助10
5秒前
6秒前
牟若溪发布了新的文献求助10
6秒前
思源应助绊宸采纳,获得10
7秒前
打打应助讨厌所有人采纳,获得10
7秒前
7秒前
TT完成签到,获得积分10
7秒前
孤独听荷完成签到,获得积分10
7秒前
8秒前
Lucas应助精明人达采纳,获得10
8秒前
8秒前
jajaqy完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034