Spatiotemporal Network Based on GCN and BiGRU for Seizure Detection

脑电图 计算机科学 模式识别(心理学) 人工智能 卷积神经网络 癫痫 图形 神经科学 心理学 理论计算机科学 生物 精神科
作者
Jie Xu,Shasha Yuan,Junliang Shang,Juan Wang,K.Q. Yan,Yankai Yang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 2037-2046 被引量:7
标识
DOI:10.1109/jbhi.2024.3349583
摘要

As an important tool for detecting and diagnosing epilepsy, multi-channel EEG records the neuronal activities of different brain regions. Visual identification of abnormal EEG signals poses challenges, making the use of artificial intelligence techniques for automated seizure detection an inevitable trend. However, existing seizure detection methods often overlook the spatial relationship between EEG channels, which can't take full advantage of brain network structure. In this paper, we design an end-to-end spatiotemporal architecture for seizure detection based on Graph Convolutional Networks (GCN) and Bidirectional Gated Recurrent Units (BiGRU) to efficiently model the spatial dependence and temporal dynamics of EEG. Firstly, the original EEG signals are preprocessed by applying wavelet transform for temporal-frequency analysis. The Pearson correlation matrix is computed for specific frequency bands and GCN is utilized to extract spatial features between EEG channels. Then, these features are sent into the BiGRU network to capture temporal relationships. Finally, the detection decisions are achieved using fully connected layers and the multi-level decision rules are implemented to provide the final results. The proposed method is validated on CHB-MIT EEG dataset, achieving 98.85% sensitivity, 95.83% specificity, 97.35% accuracy, 97.4% F1-score, and 97.33% AUC. This network fusions multiple EEG characteristics in the spatial-temporal-frequency domains to improve the detection performance and the promising result demonstrates that the performance of this model is superior to or on par with existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Blue_Pig发布了新的文献求助10
1秒前
科研通AI5应助认真子默采纳,获得10
1秒前
英姑应助dild采纳,获得10
2秒前
llx完成签到,获得积分10
3秒前
KKKKK完成签到,获得积分10
3秒前
3秒前
干净语蓉发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
英姑应助Chao采纳,获得10
7秒前
静然发布了新的文献求助10
9秒前
煤炭不甜发布了新的文献求助10
10秒前
健壮的鞯完成签到,获得积分10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
若殇丶球完成签到,获得积分10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
maox1aoxin应助科研通管家采纳,获得30
11秒前
11秒前
11秒前
搜集达人应助hqq采纳,获得10
12秒前
Blue_Pig完成签到,获得积分10
13秒前
万能图书馆应助dddd采纳,获得30
13秒前
helinchen完成签到,获得积分10
14秒前
16秒前
甜蜜花完成签到,获得积分10
16秒前
健壮的鞯发布了新的文献求助10
16秒前
顾矜应助小六子采纳,获得10
17秒前
glany发布了新的文献求助10
17秒前
煤炭不甜完成签到,获得积分10
17秒前
lll完成签到,获得积分10
18秒前
科研通AI5应助干净语蓉采纳,获得10
18秒前
Andy完成签到 ,获得积分10
19秒前
19秒前
郁乾完成签到,获得积分10
20秒前
20秒前
有魅力翠柏完成签到 ,获得积分10
20秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3704511
求助须知:如何正确求助?哪些是违规求助? 3254067
关于积分的说明 9886979
捐赠科研通 2965838
什么是DOI,文献DOI怎么找? 1626587
邀请新用户注册赠送积分活动 770918
科研通“疑难数据库(出版商)”最低求助积分说明 743094