植物毒性
磺胺甲恶唑
代谢途径
生物转化
化学
新陈代谢
植物
酶
生物
抗生素
生物化学
作者
Tao Ai,Siyu Yao,Yuanyuan Yu,Kai Peng,Ling Jin,Xifen Zhu,Haijun Zhou,Jiahui Huang,Jianteng Sun,Lizhong Zhu
标识
DOI:10.1016/j.scitotenv.2024.170857
摘要
Sulfonamide antibiotics, extensively used in human and veterinary therapy, accumulate in agroecosystem soils through livestock manure and sewage irrigation. However, the interaction between sulfonamides and rice plants remains unclear. This study investigated the transformation behavior and toxicity of sulfamethoxazole (SMX) and its main metabolite, N4-acetyl-sulfamethoxazole (NASMX) in rice. SMX and NASMX were rapidly taken up by roots and translocated acropetally. NASMX showed higher accumulating capacity, with NASMX concentrations up to 20.36 ± 1.98 μg/g (roots) and 5.62 ± 1.17 μg/g (shoots), and with SMX concentrations up to 15.97 ± 2.53 μg/g (roots) and 3.22 ± 0.789 μg/g (shoots). A total of 18 intermediate transformation products of SMX were identified by nontarget screening using Orbitrap-HRMS, revealing pathways such as deamination, hydroxylation, acetylation, formylation, and glycosylation. Notably, NASMX transformed back into SMX in rice, a novel finding. Transcriptomic analysis highlights the involvements of cytochrome P450 (CYP450), acetyltransferase (ACEs) and glycosyltransferases (GTs) in these biotransformation pathways. Moreover, exposure to SMX and NASMX disrupts TCA cycle, amino acid, linoleic acid, nucleotide metabolism, and phenylpropanoid biosynthesis pathways of rice, with NASMX exerting a stronger impact on metabolic networks. These findings elucidate the sulfonamides' metabolism, phytotoxicity mechanisms, and contribute to assessing food safety and human exposure risk amid antibiotic pollution.
科研通智能强力驱动
Strongly Powered by AbleSci AI