Multi-Stage Fusion Framework for Short-Term Passenger Flow Forecasting in Urban Rail Transit Systems Using Multi-Source Data

运输工程 期限(时间) 计算机科学 阶段(地层学) 轨道交通 流量(计算机网络) 过境(卫星) 公共交通 工程类 环境科学 地质学 计算机安全 量子力学 物理 古生物学
作者
Yijie Chen,Jinlei Zhang,Lu Yuan,Kuo Yang,Hanxiao Liu,Ying Liang
出处
期刊:Transportation Research Record [SAGE]
被引量:2
标识
DOI:10.1177/03611981231224740
摘要

To improve real-time operation and management in urban rail transit (URT) systems, accurate and reliable short-term passenger flow forecasting at the network level is a crucial task. Although numerous endeavors have been devoted to this field, the insufficient topological representation for passenger flows in the URT network, the overlooking of intrinsic correlations among multi-source data, and the information loss in deep-learning frameworks are still critical issues that need to be addressed. This study proposes a multi-stage fusion passenger forecasting (MSFPF) model to accomplish short-term multi-step passenger forecasting leveraging multi-source data, and overcome the above-mentioned challenges. Based on the characteristics of passenger flows in the URT network, time-based origin–destination flow data is involved and utilized to enhance the representation of flows and provide spatial-temporal features. Then, the interaction and relationship among multi-source data are estimated to capture their intrinsic correlations. To effectively and comprehensively extract temporal and spatial features, a transformer long short-term memory block and a depth-wise attention block are constructed with attention mechanisms and employed. Furthermore, we construct the multi-stage fusion (MSF) structure to alleviate the information loss during the learning process, which is a significant component in improving the forecasting accuracy. In addition, the model is applied to two large-scale real-world datasets, in which it outperforms nine widely used baselines and four specific variants of itself. The quantitative experiments demonstrate the robustness and superiority of the proposed MSFPF model, and the significant contribution of the MSF structure in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sallyshen完成签到 ,获得积分10
1秒前
运气爆棚发布了新的文献求助20
1秒前
1秒前
2秒前
汉堡包应助hd采纳,获得10
2秒前
liao应助ste采纳,获得10
3秒前
xxfsx应助ste采纳,获得10
3秒前
Shengang完成签到,获得积分10
4秒前
4秒前
二十一完成签到,获得积分10
5秒前
科研通AI6应助闫闫采纳,获得10
7秒前
硝基发布了新的文献求助10
7秒前
小二郎应助落花生采纳,获得20
8秒前
西西完成签到 ,获得积分10
8秒前
10秒前
10秒前
英姑应助小巧的若云采纳,获得10
10秒前
共享精神应助LL采纳,获得10
12秒前
李健的小迷弟应助肥鹤采纳,获得10
13秒前
彭于晏应助沈迎南采纳,获得10
13秒前
之之完成签到,获得积分10
13秒前
yy发布了新的文献求助30
15秒前
16秒前
CipherSage应助硝基采纳,获得10
16秒前
16秒前
17秒前
honghuhe发布了新的文献求助30
17秒前
852应助运气比较好采纳,获得10
17秒前
别管我了应助Joey采纳,获得30
18秒前
上官若男应助羞涩的寒松采纳,获得10
19秒前
情怀应助mouse_velocity采纳,获得10
20秒前
20秒前
20秒前
领导范儿应助牛牛采纳,获得10
21秒前
22秒前
1234发布了新的文献求助10
22秒前
22秒前
张姐发布了新的文献求助10
22秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474