Multi-Stage Fusion Framework for Short-Term Passenger Flow Forecasting in Urban Rail Transit Systems Using Multi-Source Data

运输工程 期限(时间) 计算机科学 阶段(地层学) 轨道交通 流量(计算机网络) 过境(卫星) 公共交通 工程类 环境科学 地质学 计算机安全 量子力学 物理 古生物学
作者
Yijie Chen,Jinlei Zhang,Lu Yuan,Kuo Yang,Hanxiao Liu,Ying Liang
出处
期刊:Transportation Research Record [SAGE]
卷期号:2678 (9): 18-36 被引量:7
标识
DOI:10.1177/03611981231224740
摘要

To improve real-time operation and management in urban rail transit (URT) systems, accurate and reliable short-term passenger flow forecasting at the network level is a crucial task. Although numerous endeavors have been devoted to this field, the insufficient topological representation for passenger flows in the URT network, the overlooking of intrinsic correlations among multi-source data, and the information loss in deep-learning frameworks are still critical issues that need to be addressed. This study proposes a multi-stage fusion passenger forecasting (MSFPF) model to accomplish short-term multi-step passenger forecasting leveraging multi-source data, and overcome the above-mentioned challenges. Based on the characteristics of passenger flows in the URT network, time-based origin–destination flow data is involved and utilized to enhance the representation of flows and provide spatial-temporal features. Then, the interaction and relationship among multi-source data are estimated to capture their intrinsic correlations. To effectively and comprehensively extract temporal and spatial features, a transformer long short-term memory block and a depth-wise attention block are constructed with attention mechanisms and employed. Furthermore, we construct the multi-stage fusion (MSF) structure to alleviate the information loss during the learning process, which is a significant component in improving the forecasting accuracy. In addition, the model is applied to two large-scale real-world datasets, in which it outperforms nine widely used baselines and four specific variants of itself. The quantitative experiments demonstrate the robustness and superiority of the proposed MSFPF model, and the significant contribution of the MSF structure in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助阿奇小白熊采纳,获得10
刚刚
领导范儿应助无奈的鞋子采纳,获得10
2秒前
jianwuzhou完成签到,获得积分10
3秒前
4秒前
5秒前
Yvoone完成签到,获得积分10
5秒前
shi1207863831发布了新的文献求助10
5秒前
5秒前
5秒前
喜欢看神仙打架完成签到 ,获得积分10
7秒前
大魔王发布了新的文献求助10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
shennie发布了新的文献求助10
8秒前
8秒前
怕黑沛山发布了新的文献求助10
9秒前
10秒前
axiba发布了新的文献求助10
10秒前
0000发布了新的文献求助10
11秒前
11秒前
ke完成签到,获得积分10
11秒前
14秒前
云蓝完成签到,获得积分10
14秒前
真君山山长完成签到,获得积分10
14秒前
14秒前
好的好的完成签到 ,获得积分20
15秒前
15秒前
17秒前
bianollo发布了新的文献求助10
17秒前
鹅小小完成签到,获得积分10
18秒前
多情的紫菜完成签到 ,获得积分10
19秒前
受伤翠容发布了新的文献求助30
19秒前
勿忘心安发布了新的文献求助10
19秒前
moonlight完成签到,获得积分10
19秒前
22秒前
三点完成签到 ,获得积分10
22秒前
好的好的发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594225
求助须知:如何正确求助?哪些是违规求助? 4679892
关于积分的说明 14811940
捐赠科研通 4646251
什么是DOI,文献DOI怎么找? 2534795
邀请新用户注册赠送积分活动 1502789
关于科研通互助平台的介绍 1469475