Multi-Stage Fusion Framework for Short-Term Passenger Flow Forecasting in Urban Rail Transit Systems Using Multi-Source Data

运输工程 期限(时间) 计算机科学 阶段(地层学) 轨道交通 流量(计算机网络) 过境(卫星) 公共交通 工程类 环境科学 地质学 计算机安全 量子力学 物理 古生物学
作者
Yijie Chen,Jinlei Zhang,Lu Yuan,Kuo Yang,Hanxiao Liu,Ying Liang
出处
期刊:Transportation Research Record [SAGE]
卷期号:2678 (9): 18-36 被引量:7
标识
DOI:10.1177/03611981231224740
摘要

To improve real-time operation and management in urban rail transit (URT) systems, accurate and reliable short-term passenger flow forecasting at the network level is a crucial task. Although numerous endeavors have been devoted to this field, the insufficient topological representation for passenger flows in the URT network, the overlooking of intrinsic correlations among multi-source data, and the information loss in deep-learning frameworks are still critical issues that need to be addressed. This study proposes a multi-stage fusion passenger forecasting (MSFPF) model to accomplish short-term multi-step passenger forecasting leveraging multi-source data, and overcome the above-mentioned challenges. Based on the characteristics of passenger flows in the URT network, time-based origin–destination flow data is involved and utilized to enhance the representation of flows and provide spatial-temporal features. Then, the interaction and relationship among multi-source data are estimated to capture their intrinsic correlations. To effectively and comprehensively extract temporal and spatial features, a transformer long short-term memory block and a depth-wise attention block are constructed with attention mechanisms and employed. Furthermore, we construct the multi-stage fusion (MSF) structure to alleviate the information loss during the learning process, which is a significant component in improving the forecasting accuracy. In addition, the model is applied to two large-scale real-world datasets, in which it outperforms nine widely used baselines and four specific variants of itself. The quantitative experiments demonstrate the robustness and superiority of the proposed MSFPF model, and the significant contribution of the MSF structure in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咸鱼发布了新的文献求助10
刚刚
lin完成签到,获得积分10
2秒前
三三得九发布了新的文献求助10
2秒前
无极微光应助ChenYX采纳,获得20
4秒前
慕青应助ChenYX采纳,获得10
4秒前
果粒橙应助ChenYX采纳,获得20
4秒前
Lucas应助ChenYX采纳,获得10
4秒前
希望天下0贩的0应助ChenYX采纳,获得10
4秒前
无极微光应助ChenYX采纳,获得20
4秒前
FashionBoy应助ChenYX采纳,获得10
4秒前
无极微光应助ChenYX采纳,获得20
4秒前
酷波er应助ChenYX采纳,获得10
4秒前
无极微光应助ChenYX采纳,获得20
4秒前
科研通AI6应助优美芝采纳,获得10
5秒前
Rubia发布了新的文献求助10
6秒前
7秒前
刘英杰完成签到,获得积分10
7秒前
三斤鱼发布了新的文献求助10
9秒前
9秒前
9秒前
科研通AI2S应助ChenYX采纳,获得10
12秒前
桐桐应助ChenYX采纳,获得10
12秒前
共享精神应助ChenYX采纳,获得10
12秒前
传奇3应助ChenYX采纳,获得10
12秒前
无极微光应助ChenYX采纳,获得20
12秒前
善学以致用应助ChenYX采纳,获得10
12秒前
今后应助ChenYX采纳,获得10
12秒前
无极微光应助ChenYX采纳,获得20
12秒前
科目三应助ChenYX采纳,获得10
12秒前
SciGPT应助三三得九采纳,获得10
12秒前
无极微光应助ChenYX采纳,获得20
12秒前
14秒前
丰富的乐儿完成签到,获得积分10
14秒前
737发布了新的文献求助10
14秒前
舒心凡应助苹果新儿采纳,获得30
14秒前
tlggg完成签到,获得积分10
14秒前
16秒前
安宏宇发布了新的文献求助10
16秒前
17秒前
合适怡完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601653
求助须知:如何正确求助?哪些是违规求助? 4687052
关于积分的说明 14847515
捐赠科研通 4681645
什么是DOI,文献DOI怎么找? 2539451
邀请新用户注册赠送积分活动 1506355
关于科研通互助平台的介绍 1471299