清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-Stage Fusion Framework for Short-Term Passenger Flow Forecasting in Urban Rail Transit Systems Using Multi-Source Data

运输工程 期限(时间) 计算机科学 阶段(地层学) 轨道交通 流量(计算机网络) 过境(卫星) 公共交通 工程类 环境科学 地质学 计算机安全 量子力学 物理 古生物学
作者
Yijie Chen,Jinlei Zhang,Lu Yuan,Kuo Yang,Hanxiao Liu,Ying Liang
出处
期刊:Transportation Research Record [SAGE]
被引量:2
标识
DOI:10.1177/03611981231224740
摘要

To improve real-time operation and management in urban rail transit (URT) systems, accurate and reliable short-term passenger flow forecasting at the network level is a crucial task. Although numerous endeavors have been devoted to this field, the insufficient topological representation for passenger flows in the URT network, the overlooking of intrinsic correlations among multi-source data, and the information loss in deep-learning frameworks are still critical issues that need to be addressed. This study proposes a multi-stage fusion passenger forecasting (MSFPF) model to accomplish short-term multi-step passenger forecasting leveraging multi-source data, and overcome the above-mentioned challenges. Based on the characteristics of passenger flows in the URT network, time-based origin–destination flow data is involved and utilized to enhance the representation of flows and provide spatial-temporal features. Then, the interaction and relationship among multi-source data are estimated to capture their intrinsic correlations. To effectively and comprehensively extract temporal and spatial features, a transformer long short-term memory block and a depth-wise attention block are constructed with attention mechanisms and employed. Furthermore, we construct the multi-stage fusion (MSF) structure to alleviate the information loss during the learning process, which is a significant component in improving the forecasting accuracy. In addition, the model is applied to two large-scale real-world datasets, in which it outperforms nine widely used baselines and four specific variants of itself. The quantitative experiments demonstrate the robustness and superiority of the proposed MSFPF model, and the significant contribution of the MSF structure in the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI6应助Liumingyu采纳,获得10
1分钟前
1分钟前
白华苍松发布了新的文献求助20
2分钟前
科研通AI6应助白华苍松采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
Liumingyu发布了新的文献求助10
2分钟前
3分钟前
LeoBigman完成签到 ,获得积分10
3分钟前
白华苍松发布了新的文献求助20
3分钟前
彭于晏应助白华苍松采纳,获得10
3分钟前
4分钟前
吊炸天完成签到 ,获得积分10
4分钟前
silence完成签到 ,获得积分10
4分钟前
飞龙在天完成签到 ,获得积分10
4分钟前
5分钟前
甘sir完成签到 ,获得积分10
5分钟前
白华苍松发布了新的文献求助20
5分钟前
6分钟前
Orange应助白华苍松采纳,获得10
6分钟前
英姑应助OmniQuan采纳,获得10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
6分钟前
OmniQuan完成签到,获得积分10
6分钟前
6分钟前
6分钟前
OmniQuan发布了新的文献求助10
6分钟前
披着羊皮的狼完成签到 ,获得积分10
7分钟前
快乐小狗发布了新的文献求助10
7分钟前
evz应助快乐小狗采纳,获得10
7分钟前
悦耳的城完成签到 ,获得积分10
7分钟前
7分钟前
8分钟前
Qing完成签到 ,获得积分10
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
白华苍松完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538930
求助须知:如何正确求助?哪些是违规求助? 4625904
关于积分的说明 14596986
捐赠科研通 4566631
什么是DOI,文献DOI怎么找? 2503430
邀请新用户注册赠送积分活动 1481474
关于科研通互助平台的介绍 1452921