亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Stage Fusion Framework for Short-Term Passenger Flow Forecasting in Urban Rail Transit Systems Using Multi-Source Data

运输工程 期限(时间) 计算机科学 阶段(地层学) 轨道交通 流量(计算机网络) 过境(卫星) 公共交通 工程类 环境科学 地质学 计算机安全 量子力学 物理 古生物学
作者
Yijie Chen,Jinlei Zhang,Lu Yuan,Kuo Yang,Hanxiao Liu,Ying Liang
出处
期刊:Transportation Research Record [SAGE]
卷期号:2678 (9): 18-36 被引量:7
标识
DOI:10.1177/03611981231224740
摘要

To improve real-time operation and management in urban rail transit (URT) systems, accurate and reliable short-term passenger flow forecasting at the network level is a crucial task. Although numerous endeavors have been devoted to this field, the insufficient topological representation for passenger flows in the URT network, the overlooking of intrinsic correlations among multi-source data, and the information loss in deep-learning frameworks are still critical issues that need to be addressed. This study proposes a multi-stage fusion passenger forecasting (MSFPF) model to accomplish short-term multi-step passenger forecasting leveraging multi-source data, and overcome the above-mentioned challenges. Based on the characteristics of passenger flows in the URT network, time-based origin–destination flow data is involved and utilized to enhance the representation of flows and provide spatial-temporal features. Then, the interaction and relationship among multi-source data are estimated to capture their intrinsic correlations. To effectively and comprehensively extract temporal and spatial features, a transformer long short-term memory block and a depth-wise attention block are constructed with attention mechanisms and employed. Furthermore, we construct the multi-stage fusion (MSF) structure to alleviate the information loss during the learning process, which is a significant component in improving the forecasting accuracy. In addition, the model is applied to two large-scale real-world datasets, in which it outperforms nine widely used baselines and four specific variants of itself. The quantitative experiments demonstrate the robustness and superiority of the proposed MSFPF model, and the significant contribution of the MSF structure in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲜橙完成签到 ,获得积分10
12秒前
清浅发布了新的文献求助10
15秒前
25秒前
29秒前
时尚的萝发布了新的文献求助10
31秒前
40秒前
羽魄完成签到 ,获得积分10
42秒前
科研兵发布了新的文献求助10
45秒前
能干凝冬完成签到,获得积分10
47秒前
49秒前
zqq完成签到,获得积分0
1分钟前
1分钟前
科研通AI2S应助科研兵采纳,获得10
1分钟前
充电宝应助小坚果采纳,获得10
1分钟前
天天天晴完成签到 ,获得积分10
1分钟前
调皮的代双完成签到 ,获得积分10
1分钟前
1分钟前
风华正茂发布了新的文献求助10
1分钟前
彩色的曼柔完成签到 ,获得积分10
1分钟前
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
小坚果发布了新的文献求助10
1分钟前
英姑应助风华正茂采纳,获得30
1分钟前
2分钟前
风华正茂发布了新的文献求助30
2分钟前
清浅发布了新的文献求助30
2分钟前
2分钟前
2分钟前
陈y完成签到 ,获得积分10
2分钟前
小橙子完成签到 ,获得积分10
3分钟前
霸气布鲁托完成签到 ,获得积分10
3分钟前
3分钟前
希喵子发布了新的文献求助10
3分钟前
cenghao完成签到,获得积分0
3分钟前
生动友容发布了新的文献求助100
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664209
求助须知:如何正确求助?哪些是违规求助? 4858803
关于积分的说明 15107274
捐赠科研通 4822673
什么是DOI,文献DOI怎么找? 2581639
邀请新用户注册赠送积分活动 1535838
关于科研通互助平台的介绍 1494067