亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Stage Fusion Framework for Short-Term Passenger Flow Forecasting in Urban Rail Transit Systems Using Multi-Source Data

运输工程 期限(时间) 计算机科学 阶段(地层学) 轨道交通 流量(计算机网络) 过境(卫星) 公共交通 工程类 环境科学 地质学 计算机安全 量子力学 物理 古生物学
作者
Yijie Chen,Jinlei Zhang,Lu Yuan,Kuo Yang,Hanxiao Liu,Ying Liang
出处
期刊:Transportation Research Record [SAGE Publishing]
被引量:2
标识
DOI:10.1177/03611981231224740
摘要

To improve real-time operation and management in urban rail transit (URT) systems, accurate and reliable short-term passenger flow forecasting at the network level is a crucial task. Although numerous endeavors have been devoted to this field, the insufficient topological representation for passenger flows in the URT network, the overlooking of intrinsic correlations among multi-source data, and the information loss in deep-learning frameworks are still critical issues that need to be addressed. This study proposes a multi-stage fusion passenger forecasting (MSFPF) model to accomplish short-term multi-step passenger forecasting leveraging multi-source data, and overcome the above-mentioned challenges. Based on the characteristics of passenger flows in the URT network, time-based origin–destination flow data is involved and utilized to enhance the representation of flows and provide spatial-temporal features. Then, the interaction and relationship among multi-source data are estimated to capture their intrinsic correlations. To effectively and comprehensively extract temporal and spatial features, a transformer long short-term memory block and a depth-wise attention block are constructed with attention mechanisms and employed. Furthermore, we construct the multi-stage fusion (MSF) structure to alleviate the information loss during the learning process, which is a significant component in improving the forecasting accuracy. In addition, the model is applied to two large-scale real-world datasets, in which it outperforms nine widely used baselines and four specific variants of itself. The quantitative experiments demonstrate the robustness and superiority of the proposed MSFPF model, and the significant contribution of the MSF structure in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
7秒前
xx发布了新的文献求助10
12秒前
村上春树的摩的完成签到 ,获得积分10
13秒前
Rondab应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
Rondab应助科研通管家采纳,获得10
14秒前
共享精神应助krajicek采纳,获得10
14秒前
量子星尘发布了新的文献求助10
17秒前
21秒前
24秒前
玛琳卡迪马完成签到,获得积分10
32秒前
49秒前
51秒前
纸抽盒发布了新的文献求助30
51秒前
54秒前
nature完成签到 ,获得积分10
54秒前
1分钟前
梨子茶完成签到,获得积分10
1分钟前
单耳兔完成签到 ,获得积分10
1分钟前
云飞扬应助冷静的傲易采纳,获得10
1分钟前
1分钟前
DduYy完成签到,获得积分10
1分钟前
1分钟前
白开水完成签到,获得积分10
1分钟前
深情安青应助xx采纳,获得10
1分钟前
Never stall完成签到 ,获得积分10
1分钟前
rrrrry发布了新的文献求助10
1分钟前
冷静的傲易完成签到,获得积分10
1分钟前
充电宝应助Sherry采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
深情安青应助蓝灵采纳,获得10
2分钟前
2分钟前
krajicek发布了新的文献求助10
2分钟前
美好莹芝完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
思源应助科研通管家采纳,获得30
2分钟前
Rondab应助科研通管家采纳,获得30
2分钟前
Rondab应助科研通管家采纳,获得30
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960053
求助须知:如何正确求助?哪些是违规求助? 3506261
关于积分的说明 11128492
捐赠科研通 3238225
什么是DOI,文献DOI怎么找? 1789595
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056