亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Stage Fusion Framework for Short-Term Passenger Flow Forecasting in Urban Rail Transit Systems Using Multi-Source Data

运输工程 期限(时间) 计算机科学 阶段(地层学) 轨道交通 流量(计算机网络) 过境(卫星) 公共交通 工程类 环境科学 地质学 计算机安全 量子力学 物理 古生物学
作者
Yijie Chen,Jinlei Zhang,Lu Yuan,Kuo Yang,Hanxiao Liu,Ying Liang
出处
期刊:Transportation Research Record [SAGE Publishing]
被引量:2
标识
DOI:10.1177/03611981231224740
摘要

To improve real-time operation and management in urban rail transit (URT) systems, accurate and reliable short-term passenger flow forecasting at the network level is a crucial task. Although numerous endeavors have been devoted to this field, the insufficient topological representation for passenger flows in the URT network, the overlooking of intrinsic correlations among multi-source data, and the information loss in deep-learning frameworks are still critical issues that need to be addressed. This study proposes a multi-stage fusion passenger forecasting (MSFPF) model to accomplish short-term multi-step passenger forecasting leveraging multi-source data, and overcome the above-mentioned challenges. Based on the characteristics of passenger flows in the URT network, time-based origin–destination flow data is involved and utilized to enhance the representation of flows and provide spatial-temporal features. Then, the interaction and relationship among multi-source data are estimated to capture their intrinsic correlations. To effectively and comprehensively extract temporal and spatial features, a transformer long short-term memory block and a depth-wise attention block are constructed with attention mechanisms and employed. Furthermore, we construct the multi-stage fusion (MSF) structure to alleviate the information loss during the learning process, which is a significant component in improving the forecasting accuracy. In addition, the model is applied to two large-scale real-world datasets, in which it outperforms nine widely used baselines and four specific variants of itself. The quantitative experiments demonstrate the robustness and superiority of the proposed MSFPF model, and the significant contribution of the MSF structure in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
13秒前
zyz发布了新的文献求助20
18秒前
SDNUDRUG发布了新的文献求助10
28秒前
38秒前
SDNUDRUG完成签到,获得积分10
39秒前
大模型应助隋嫣然采纳,获得10
42秒前
潦草小狗完成签到 ,获得积分10
49秒前
tutu完成签到,获得积分10
53秒前
57秒前
英俊的铭应助zyz采纳,获得10
57秒前
鲁路修完成签到,获得积分10
58秒前
1分钟前
1分钟前
1分钟前
PLEDGE完成签到,获得积分10
1分钟前
chuan发布了新的文献求助10
1分钟前
chuan完成签到,获得积分10
1分钟前
1分钟前
长街完成签到,获得积分10
1分钟前
长街发布了新的文献求助10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
PengDai发布了新的文献求助200
2分钟前
2分钟前
YOGA1115发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
CodeCraft应助PengDai采纳,获得10
3分钟前
3分钟前
Meya发布了新的文献求助10
3分钟前
Meya完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
Sunsheng应助娇气的亦云采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5031321
求助须知:如何正确求助?哪些是违规求助? 4266008
关于积分的说明 13298415
捐赠科研通 4075173
什么是DOI,文献DOI怎么找? 2228903
邀请新用户注册赠送积分活动 1237490
关于科研通互助平台的介绍 1162295