Multi-Agent Reinforcement Learning With Decentralized Distribution Correction

强化学习 计算机科学 钢筋 多智能体系统 分散系统 人工智能 分布式计算 工程类 控制(管理) 结构工程
作者
Kuo Li,Qing‐Shan Jia
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tase.2024.3369592
摘要

This work considers decentralized multi-agent reinforcement learning (MARL), where the global states and rewards are assumed to be fully observable, while the local behavior policy is preserved locally for resisting adversarial attack. In order to cooperatively accumulate more rewards, the agents exchange messages among a time-varying communication network to reach consensus. For these cooperative tasks, we propose a decentralized actor-critic algorithm, where the agents make individual decisions, but the joint behavior policy is optimized towards more cumulative rewards. We provide the theoretical analysis towards the convergence under the tabular setting and then expand it to nonlinear function approximations. Furthermore, by incorporating decentralized distribution correction, the agents are trained in an off-policy manner for higher sample efficiency. Finally, we conduct experiments to evaluate the algorithms, where the proposed algorithm performs competitively in both stability and asymptotic performance. Note to Practitioners —Fully decentralized MARL algorithms are widely applied in multi-agent systems for generating cooperative behaviors, e.g., multiple unmanned aerial vehicles (UAV) cooperatively performing search and rescue tasks, multiple vehicles efficiently passing a crowded intersection, and multiple robots cooperatively handling cargo or obstacles. Focusing on these potential applications, this work is motivated to improve the sample efficiency of recent decentralized MARL algorithms by incorporating off-policy training approaches. In this work, we reweight historical trajectories via a decentralized average consensus step and develop corresponding policy-optimization procedures, with which previous trajectories could be used to stabilize later iterations. Since the training materials are augmented by historical samples, the sample efficiency is significantly improved, and the training process is stabilized. With the fully decentralized training approach, the proposed algorithms are expected to be applied in large-scale systems, e.g., vehicle teams and UAV groups, for effective real-time control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得20
3秒前
orixero应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
拉长的博超完成签到,获得积分10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
3秒前
6秒前
爆米花应助春江采纳,获得10
7秒前
在水一方应助treelet007采纳,获得10
7秒前
7秒前
7秒前
xuxingxing发布了新的文献求助10
8秒前
8秒前
9秒前
庄艺斌完成签到,获得积分10
9秒前
9秒前
10秒前
传奇3应助微光熠采纳,获得10
10秒前
聪明邪欢完成签到,获得积分10
11秒前
科目三应助misaka采纳,获得10
12秒前
12秒前
神音发布了新的文献求助10
12秒前
左西发布了新的文献求助10
12秒前
吴彦祖发布了新的文献求助10
13秒前
瞌睡虫发布了新的文献求助10
14秒前
烟花应助一一采纳,获得30
14秒前
15秒前
xxfsx应助zhe采纳,获得10
15秒前
77发布了新的文献求助10
15秒前
15秒前
16秒前
无花果应助wanfeng采纳,获得10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431238
求助须知:如何正确求助?哪些是违规求助? 4544308
关于积分的说明 14191949
捐赠科研通 4463001
什么是DOI,文献DOI怎么找? 2446662
邀请新用户注册赠送积分活动 1438033
关于科研通互助平台的介绍 1414720