Multi-Agent Reinforcement Learning With Decentralized Distribution Correction

强化学习 计算机科学 钢筋 多智能体系统 分散系统 人工智能 分布式计算 工程类 控制(管理) 结构工程
作者
Kuo Li,Qing‐Shan Jia
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tase.2024.3369592
摘要

This work considers decentralized multi-agent reinforcement learning (MARL), where the global states and rewards are assumed to be fully observable, while the local behavior policy is preserved locally for resisting adversarial attack. In order to cooperatively accumulate more rewards, the agents exchange messages among a time-varying communication network to reach consensus. For these cooperative tasks, we propose a decentralized actor-critic algorithm, where the agents make individual decisions, but the joint behavior policy is optimized towards more cumulative rewards. We provide the theoretical analysis towards the convergence under the tabular setting and then expand it to nonlinear function approximations. Furthermore, by incorporating decentralized distribution correction, the agents are trained in an off-policy manner for higher sample efficiency. Finally, we conduct experiments to evaluate the algorithms, where the proposed algorithm performs competitively in both stability and asymptotic performance. Note to Practitioners —Fully decentralized MARL algorithms are widely applied in multi-agent systems for generating cooperative behaviors, e.g., multiple unmanned aerial vehicles (UAV) cooperatively performing search and rescue tasks, multiple vehicles efficiently passing a crowded intersection, and multiple robots cooperatively handling cargo or obstacles. Focusing on these potential applications, this work is motivated to improve the sample efficiency of recent decentralized MARL algorithms by incorporating off-policy training approaches. In this work, we reweight historical trajectories via a decentralized average consensus step and develop corresponding policy-optimization procedures, with which previous trajectories could be used to stabilize later iterations. Since the training materials are augmented by historical samples, the sample efficiency is significantly improved, and the training process is stabilized. With the fully decentralized training approach, the proposed algorithms are expected to be applied in large-scale systems, e.g., vehicle teams and UAV groups, for effective real-time control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
画月完成签到 ,获得积分10
刚刚
1秒前
1秒前
黑石发布了新的文献求助10
1秒前
小不点完成签到,获得积分10
1秒前
呵呵完成签到 ,获得积分10
1秒前
Akim应助潇湘雪月采纳,获得10
2秒前
赘婿应助fengliurencai采纳,获得10
3秒前
宋凤娇发布了新的文献求助10
3秒前
青山发布了新的文献求助100
3秒前
菜菜博士发布了新的文献求助10
3秒前
刘佳冉发布了新的文献求助10
4秒前
ASZXDW完成签到,获得积分10
4秒前
讨厌科研发布了新的文献求助10
4秒前
星空发布了新的文献求助30
5秒前
风趣的爆米花完成签到,获得积分10
5秒前
LTT完成签到,获得积分10
6秒前
6秒前
酷波er应助平淡夜柳采纳,获得10
6秒前
6秒前
阳光怀亦发布了新的文献求助50
8秒前
杜杜发布了新的文献求助10
11秒前
12秒前
123发布了新的文献求助10
13秒前
搜集达人应助活泼的行天采纳,获得10
14秒前
chen完成签到 ,获得积分10
14秒前
14秒前
linp发布了新的文献求助10
15秒前
LLL完成签到,获得积分10
16秒前
KDC完成签到,获得积分10
16秒前
阳光怀亦完成签到,获得积分10
17秒前
18秒前
呆瓜完成签到,获得积分10
18秒前
19秒前
19秒前
共享精神应助黑石采纳,获得10
20秒前
失眠的夏蓉完成签到,获得积分10
20秒前
20秒前
天天快乐应助潇湘雪月采纳,获得10
21秒前
胡图图发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174