Multi-Agent Reinforcement Learning With Decentralized Distribution Correction

强化学习 计算机科学 钢筋 多智能体系统 分散系统 人工智能 分布式计算 工程类 控制(管理) 结构工程
作者
Kuo Li,Qing‐Shan Jia
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:22: 1684-1696 被引量:12
标识
DOI:10.1109/tase.2024.3369592
摘要

This work considers decentralized multi-agent reinforcement learning (MARL), where the global states and rewards are assumed to be fully observable, while the local behavior policy is preserved locally for resisting adversarial attack. In order to cooperatively accumulate more rewards, the agents exchange messages among a time-varying communication network to reach consensus. For these cooperative tasks, we propose a decentralized actor-critic algorithm, where the agents make individual decisions, but the joint behavior policy is optimized towards more cumulative rewards. We provide the theoretical analysis towards the convergence under the tabular setting and then expand it to nonlinear function approximations. Furthermore, by incorporating decentralized distribution correction, the agents are trained in an off-policy manner for higher sample efficiency. Finally, we conduct experiments to evaluate the algorithms, where the proposed algorithm performs competitively in both stability and asymptotic performance. Note to Practitioners —Fully decentralized MARL algorithms are widely applied in multi-agent systems for generating cooperative behaviors, e.g., multiple unmanned aerial vehicles (UAV) cooperatively performing search and rescue tasks, multiple vehicles efficiently passing a crowded intersection, and multiple robots cooperatively handling cargo or obstacles. Focusing on these potential applications, this work is motivated to improve the sample efficiency of recent decentralized MARL algorithms by incorporating off-policy training approaches. In this work, we reweight historical trajectories via a decentralized average consensus step and develop corresponding policy-optimization procedures, with which previous trajectories could be used to stabilize later iterations. Since the training materials are augmented by historical samples, the sample efficiency is significantly improved, and the training process is stabilized. With the fully decentralized training approach, the proposed algorithms are expected to be applied in large-scale systems, e.g., vehicle teams and UAV groups, for effective real-time control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助张婷采纳,获得10
刚刚
刚刚
科研通AI6应助杨佳楠采纳,获得10
1秒前
周乘风发布了新的文献求助10
1秒前
brk完成签到,获得积分10
2秒前
下雨了完成签到,获得积分10
3秒前
3秒前
英俊的铭应助Emma采纳,获得10
3秒前
Hello应助Yuanyuan采纳,获得10
4秒前
Duomo完成签到 ,获得积分10
5秒前
留胡子的火完成签到,获得积分10
5秒前
黄俊完成签到,获得积分10
6秒前
壮壮发布了新的文献求助10
6秒前
DMMM完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
科研小白董完成签到 ,获得积分10
7秒前
科研通AI2S应助谢先生采纳,获得10
7秒前
lalala发布了新的文献求助10
7秒前
慧慧34完成签到 ,获得积分10
7秒前
8秒前
你好完成签到,获得积分20
9秒前
tttttt发布了新的文献求助10
9秒前
9秒前
9秒前
周乘风完成签到,获得积分10
9秒前
9秒前
一一应助兴奋的机器猫采纳,获得10
10秒前
dyfsj发布了新的文献求助10
10秒前
11秒前
SciGPT应助keyanren_小庆采纳,获得10
11秒前
11秒前
12秒前
Danboard发布了新的文献求助10
14秒前
丽丽完成签到,获得积分10
14秒前
14秒前
yyh发布了新的文献求助30
15秒前
16秒前
zwk完成签到,获得积分10
16秒前
鹂鹂复霖霖完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524661
求助须知:如何正确求助?哪些是违规求助? 4615154
关于积分的说明 14546595
捐赠科研通 4553141
什么是DOI,文献DOI怎么找? 2495163
邀请新用户注册赠送积分活动 1475760
关于科研通互助平台的介绍 1447541