亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Agent Reinforcement Learning With Decentralized Distribution Correction

强化学习 计算机科学 钢筋 多智能体系统 分散系统 人工智能 分布式计算 工程类 控制(管理) 结构工程
作者
Kuo Li,Qing‐Shan Jia
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tase.2024.3369592
摘要

This work considers decentralized multi-agent reinforcement learning (MARL), where the global states and rewards are assumed to be fully observable, while the local behavior policy is preserved locally for resisting adversarial attack. In order to cooperatively accumulate more rewards, the agents exchange messages among a time-varying communication network to reach consensus. For these cooperative tasks, we propose a decentralized actor-critic algorithm, where the agents make individual decisions, but the joint behavior policy is optimized towards more cumulative rewards. We provide the theoretical analysis towards the convergence under the tabular setting and then expand it to nonlinear function approximations. Furthermore, by incorporating decentralized distribution correction, the agents are trained in an off-policy manner for higher sample efficiency. Finally, we conduct experiments to evaluate the algorithms, where the proposed algorithm performs competitively in both stability and asymptotic performance. Note to Practitioners —Fully decentralized MARL algorithms are widely applied in multi-agent systems for generating cooperative behaviors, e.g., multiple unmanned aerial vehicles (UAV) cooperatively performing search and rescue tasks, multiple vehicles efficiently passing a crowded intersection, and multiple robots cooperatively handling cargo or obstacles. Focusing on these potential applications, this work is motivated to improve the sample efficiency of recent decentralized MARL algorithms by incorporating off-policy training approaches. In this work, we reweight historical trajectories via a decentralized average consensus step and develop corresponding policy-optimization procedures, with which previous trajectories could be used to stabilize later iterations. Since the training materials are augmented by historical samples, the sample efficiency is significantly improved, and the training process is stabilized. With the fully decentralized training approach, the proposed algorithms are expected to be applied in large-scale systems, e.g., vehicle teams and UAV groups, for effective real-time control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
药学卷王完成签到,获得积分20
18秒前
28秒前
清脆元冬发布了新的文献求助10
31秒前
33秒前
李玄发布了新的文献求助10
1分钟前
1分钟前
yhe314992205发布了新的文献求助30
1分钟前
Hello应助李玄采纳,获得10
1分钟前
1分钟前
药学卷王发布了新的文献求助10
1分钟前
weibo完成签到,获得积分10
1分钟前
yhe314992205完成签到,获得积分10
1分钟前
1分钟前
yb完成签到,获得积分10
2分钟前
桦奕兮完成签到 ,获得积分10
2分钟前
万能图书馆应助mmj采纳,获得10
2分钟前
楠楠完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
GTT0720完成签到 ,获得积分10
3分钟前
3分钟前
l1563358发布了新的文献求助10
3分钟前
清脆元冬发布了新的文献求助10
4分钟前
CipherSage应助清脆元冬采纳,获得10
4分钟前
gszy1975完成签到,获得积分10
4分钟前
彩虹儿应助科研通管家采纳,获得10
5分钟前
chen发布了新的文献求助30
5分钟前
科研通AI5应助研友_ana采纳,获得10
5分钟前
钟钟完成签到,获得积分10
5分钟前
lixuebin完成签到 ,获得积分10
6分钟前
chen完成签到,获得积分10
6分钟前
6分钟前
研友_ana发布了新的文献求助10
6分钟前
6分钟前
彩虹儿应助科研通管家采纳,获得10
7分钟前
7分钟前
8分钟前
芜湖发布了新的文献求助10
8分钟前
欢呼若南发布了新的文献求助10
8分钟前
芜湖完成签到,获得积分10
8分钟前
田様应助111采纳,获得10
8分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137649
求助须知:如何正确求助?哪些是违规求助? 4337345
关于积分的说明 13511452
捐赠科研通 4176034
什么是DOI,文献DOI怎么找? 2289822
邀请新用户注册赠送积分活动 1290349
关于科研通互助平台的介绍 1232134