Multi-Agent Reinforcement Learning With Decentralized Distribution Correction

强化学习 计算机科学 钢筋 多智能体系统 分散系统 人工智能 分布式计算 工程类 控制(管理) 结构工程
作者
Kuo Li,Qing‐Shan Jia
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tase.2024.3369592
摘要

This work considers decentralized multi-agent reinforcement learning (MARL), where the global states and rewards are assumed to be fully observable, while the local behavior policy is preserved locally for resisting adversarial attack. In order to cooperatively accumulate more rewards, the agents exchange messages among a time-varying communication network to reach consensus. For these cooperative tasks, we propose a decentralized actor-critic algorithm, where the agents make individual decisions, but the joint behavior policy is optimized towards more cumulative rewards. We provide the theoretical analysis towards the convergence under the tabular setting and then expand it to nonlinear function approximations. Furthermore, by incorporating decentralized distribution correction, the agents are trained in an off-policy manner for higher sample efficiency. Finally, we conduct experiments to evaluate the algorithms, where the proposed algorithm performs competitively in both stability and asymptotic performance. Note to Practitioners —Fully decentralized MARL algorithms are widely applied in multi-agent systems for generating cooperative behaviors, e.g., multiple unmanned aerial vehicles (UAV) cooperatively performing search and rescue tasks, multiple vehicles efficiently passing a crowded intersection, and multiple robots cooperatively handling cargo or obstacles. Focusing on these potential applications, this work is motivated to improve the sample efficiency of recent decentralized MARL algorithms by incorporating off-policy training approaches. In this work, we reweight historical trajectories via a decentralized average consensus step and develop corresponding policy-optimization procedures, with which previous trajectories could be used to stabilize later iterations. Since the training materials are augmented by historical samples, the sample efficiency is significantly improved, and the training process is stabilized. With the fully decentralized training approach, the proposed algorithms are expected to be applied in large-scale systems, e.g., vehicle teams and UAV groups, for effective real-time control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助愉快之槐采纳,获得10
刚刚
刚刚
1秒前
ZhuXX发布了新的文献求助10
1秒前
elle发布了新的文献求助10
1秒前
2秒前
CNS发布了新的文献求助10
2秒前
3秒前
s澄橙完成签到,获得积分10
7秒前
勤恳化蛹完成签到 ,获得积分10
7秒前
monere应助张朝程采纳,获得10
7秒前
8秒前
ohm发布了新的文献求助10
9秒前
10秒前
Owen应助elle采纳,获得10
11秒前
eve发布了新的文献求助10
12秒前
闹一闹吧费曼先生完成签到 ,获得积分10
12秒前
Mr杨完成签到,获得积分20
12秒前
852应助大气的谷梦采纳,获得10
13秒前
14秒前
Michael发布了新的文献求助10
15秒前
Sandy完成签到,获得积分10
16秒前
NexusExplorer应助Nathan采纳,获得10
16秒前
16秒前
可可完成签到,获得积分10
17秒前
舒心的夜山完成签到,获得积分20
17秒前
18秒前
18秒前
19秒前
zx发布了新的文献求助10
19秒前
childheart发布了新的文献求助10
19秒前
学不动完成签到 ,获得积分10
20秒前
怜梦完成签到,获得积分10
20秒前
21秒前
court完成签到 ,获得积分10
21秒前
孟紫伊关注了科研通微信公众号
22秒前
22秒前
lzxzx发布了新的文献求助10
23秒前
王一证发布了新的文献求助10
23秒前
天天快乐应助jie采纳,获得10
25秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Keywords: explanatory textual sequences, motivation, self-determination, academic performance, math, artificial intelligence 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267427
求助须知:如何正确求助?哪些是违规求助? 2906845
关于积分的说明 8339782
捐赠科研通 2577416
什么是DOI,文献DOI怎么找? 1400949
科研通“疑难数据库(出版商)”最低求助积分说明 654995
邀请新用户注册赠送积分活动 633900