Multimetal-Based Metal–Organic Framework System for the Sensitive Detection of Heart-Type Fatty Acid Binding Protein in Electrochemiluminescence Immunoassay

化学 电化学发光 电子转移 金属有机骨架 猝灭(荧光) 色谱法 分子内力 组合化学 光化学 检出限 物理化学 荧光 吸附 有机化学 量子力学 物理
作者
Yuan Li,Guanhui Zhao,Bing An,Kun Xu,Dan Wu,Xiang Ren,Hongmin Ma,Xuejing Liu,Rui Feng,Qin Wei
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (10): 4067-4075 被引量:15
标识
DOI:10.1021/acs.analchem.3c04515
摘要

In this work, an electrochemiluminescence (ECL) quenching system using multimetal–organic frameworks (MMOFs) was proposed for the sensitive and specific detection of heart-type fatty acid-binding protein (H-FABP), a marker of acute myocardial infarction (AMI). Bimetallic MOFs containing Ru and Mn as metal centers were synthesized via a one-step hydrothermal method, yielding RuMn MOFs as the ECL emitter. The RuMn MOFs not only possessed the strong ECL performance of Ru(bpy)32+ but also maintained high porosity and original metal active sites characteristic of MOFs. Moreover, under the synergistic effect of MOFs and Ru(bpy)32+, RuMn MOFs have more efficient and stable ECL emission. The trimetal-based MOF (FePtRh MOF) was used as the ECL quencher because of the electron transfer between FePtRh MOFs and RuMn MOFs. In addition, active intramolecular electron transfer from Pt to Fe or Rh atoms also occurred in FePtRh MOFs, which could promote intermolecular electron transfer and improve electron transfer efficiency to enhance the quenching efficiency. The proposed ECL immunosensor demonstrated a wide dynamic range and a low detection limit of 0.01–100 ng mL–1 and 6.8 pg mL–1, respectively, under optimal conditions. The ECL quenching system also presented good specificity, stability, and reproducibility. Therefore, an alternative method for H-FABP detection in clinical diagnosis was provided by this study, highlighting the potential of MMOFs in advancing ECL technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tt完成签到,获得积分10
1秒前
高峰发布了新的文献求助30
2秒前
水水完成签到,获得积分10
2秒前
黑鲨完成签到 ,获得积分10
2秒前
2秒前
乐正飞风发布了新的文献求助10
2秒前
先林应助11di采纳,获得10
2秒前
secret完成签到,获得积分10
3秒前
sansan发布了新的文献求助10
4秒前
斯文莺发布了新的文献求助10
4秒前
Reid完成签到 ,获得积分10
4秒前
kmelo发布了新的文献求助10
5秒前
淡然夏天关注了科研通微信公众号
5秒前
科研小呆瓜完成签到,获得积分20
5秒前
6秒前
6秒前
7秒前
7秒前
科研通AI6应助迷人书蝶采纳,获得10
8秒前
李健应助阿雷采纳,获得10
8秒前
科研通AI6应助xixi采纳,获得10
9秒前
linlinyilulvdeng完成签到,获得积分10
9秒前
科研通AI2S应助尹辉采纳,获得10
9秒前
爱听歌老1完成签到,获得积分10
9秒前
10秒前
沈若南应助灯灯采纳,获得10
10秒前
11秒前
11秒前
11秒前
111发布了新的文献求助10
11秒前
11秒前
11秒前
谨慎的灵完成签到 ,获得积分20
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660809
求助须知:如何正确求助?哪些是违规求助? 4835652
关于积分的说明 15091990
捐赠科研通 4819406
什么是DOI,文献DOI怎么找? 2579257
邀请新用户注册赠送积分活动 1533773
关于科研通互助平台的介绍 1492565