Use of artificial intelligence and radiomics for risk stratification in patients with pulmonary embolism: New tools for an old problem

肺栓塞 无线电技术 危险分层 分层(种子) 医学 人工智能 重症监护医学 内科学 计算机科学 放射科 生物 休眠 植物 种子休眠 发芽
作者
Davide Santagata,Paolo Prandoni,Walter Ageno
出处
期刊:European Journal of Clinical Investigation [Wiley]
卷期号:54 (5)
标识
DOI:10.1111/eci.14171
摘要

European Journal of Clinical InvestigationEarly View e14171 EDITORIAL Use of artificial intelligence and radiomics for risk stratification in patients with pulmonary embolism: New tools for an old problem Davide Santagata, Davide Santagata orcid.org/0000-0003-1748-960X Department of Medicine and Surgery, Research center on Thrombosis and Antithrombotic Therapies, University of Insubria, Varese, ItalySearch for more papers by this authorMarco Paolo Donadini, Marco Paolo Donadini orcid.org/0000-0001-5065-318X Department of Medicine and Surgery, Research center on Thrombosis and Antithrombotic Therapies, University of Insubria, Varese, ItalySearch for more papers by this authorWalter Ageno, Corresponding Author Walter Ageno [email protected] orcid.org/0000-0002-1922-8879 Department of Medicine and Surgery, Research center on Thrombosis and Antithrombotic Therapies, University of Insubria, Varese, Italy Correspondence Walter Ageno, Department of Medicine and Surgery, Research Center on Thromboembolic Disorders and Antithrombotic Therapies, University of Insubria, Via Gucciardini 9, Varese, Italy. Email: [email protected]Search for more papers by this author Davide Santagata, Davide Santagata orcid.org/0000-0003-1748-960X Department of Medicine and Surgery, Research center on Thrombosis and Antithrombotic Therapies, University of Insubria, Varese, ItalySearch for more papers by this authorMarco Paolo Donadini, Marco Paolo Donadini orcid.org/0000-0001-5065-318X Department of Medicine and Surgery, Research center on Thrombosis and Antithrombotic Therapies, University of Insubria, Varese, ItalySearch for more papers by this authorWalter Ageno, Corresponding Author Walter Ageno [email protected] orcid.org/0000-0002-1922-8879 Department of Medicine and Surgery, Research center on Thrombosis and Antithrombotic Therapies, University of Insubria, Varese, Italy Correspondence Walter Ageno, Department of Medicine and Surgery, Research Center on Thromboembolic Disorders and Antithrombotic Therapies, University of Insubria, Via Gucciardini 9, Varese, Italy. Email: [email protected]Search for more papers by this author First published: 24 January 2024 https://doi.org/10.1111/eci.14171Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat CONFLICT OF INTEREST STATEMENT Walter Ageno: research support from Bayer and advisory boards for Astra Zeneca, Bayer, BMS-Pfizer, Norgine, Sanofi, Techdow, Viatris. Davide Santagata: nothing to disclose. Marco Paolo Donadini: nothing to disclose. REFERENCES 1Goldhaber SZ, Bounameaux H. Pulmonary embolism and deep vein thrombosis. Lancet. 2012; 379(9828): 1835-1846. 10.1016/S0140-6736(11)61904-1 PubMedWeb of Science®Google Scholar 2Konstantinides SV, Meyer G, Becattini C, et al. 2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J. 2020; 41(4): 543-603. 10.1093/eurheartj/ehz405 PubMedWeb of Science®Google Scholar 3Doupe P, Faghmous J, Basu S. Machine learning for health services researchers. Value Health. 2019; 22(7): 808-815. 10.1016/j.jval.2019.02.012 PubMedWeb of Science®Google Scholar 4Huang Y, Li J, Li M, Aparasu RR. Application of machine learning in predicting survival outcomes involving real-world data: a scoping review. BMC Med Res Methodol. 2023; 23(1): 268. 10.1186/s12874-023-02078-1 PubMedWeb of Science®Google Scholar 5Zou S, Wu Z. A narrative review of the application of machine learning in venous thromboembolism. Vascular. 2023. doi:10.1177/17085381231153216 10.1177/17085381231153216 Web of Science®Google Scholar 6Franco-Moreno A, Muñoz-Rivas N, Ruiz-Giardín JM, de Ancos-Aracil C. Artificial intelligence for recurrence in patients with venous thromboembolism: towards a new era. Rev Clin Esp (Barc). 2023; 223(7): 456-459. 10.1016/j.rce.2023.04.006 CASPubMedWeb of Science®Google Scholar 7Jha AK, Mithun S, Sherkhane UB, et al. Emerging role of quantitative imaging (radiomics) and artificial intelligence in precision oncology. Explor Target Antitumor Ther. 2023; 4(4): 569-582. 10.37349/etat.2023.00153 PubMedGoogle Scholar 8Topff L, Ranschaert ER, Bartels-Rutten A, et al. Artificial intelligence tool for detection and worklist prioritization reduces time to diagnosis of incidental pulmonary embolism at CT. Radiol Cardiothorac Imaging. 2023; 5(2):e220163. 10.1148/ryct.220163 PubMedGoogle Scholar 9Baeza S, Gil D, Garcia-Olivé I, et al. Correction: a novel intelligent radiomic analysis of perfusion SPECT/CT images to optimize pulmonary embolism diagnosis in COVID-19 patients. EJNMMI Phys. 2023; 10(1): 13. 10.1186/s40658-023-00532-z PubMedWeb of Science®Google Scholar 10Cheikh AB, Gorincour G, Nivet H, et al. How artificial intelligence improves radiological interpretation in suspected pulmonary embolism. Eur Radiol. 2022; 32(9): 5831-5842. 10.1007/s00330-022-08645-2 CASPubMedWeb of Science®Google Scholar 11Ma X, Ferguson EC, Jiang X, Savitz SI, Shams S. A multitask deep learning approach for pulmonary embolism detection and identification. Sci Rep. 2022; 12(1): 13087. 10.1038/s41598-022-16976-9 CASPubMedWeb of Science®Google Scholar 12Su H, Han Z, Fu Y, et al. Detection of pulmonary embolism severity using clinical characteristics, hematological indices, and machine learning techniques. Front Neuroinform. 2022; 16:1029690. 10.3389/fninf.2022.1029690 PubMedWeb of Science®Google Scholar 13Gao Y, Wang Y, Cao X, et al. Rapid prediction of deterioration risk among non-high-risk patients with acute pulmonary embolism at admission: an imaging tool. Int J Cardiol. 2021; 338: 229-236. 10.1016/j.ijcard.2021.06.013 PubMedWeb of Science®Google Scholar 14Gotta J, Koch V, Geyer T, et al. Imaging-based risk stratification of patients with pulmonary embolism based on dual-energy CT-derived radiomics. Eur J Clin Investig. 2023;e14139. 10.1111/eci.14139 PubMedWeb of Science®Google Scholar 15Weintraub SF, You J, Wilson S, Galmer A. The challenge of intermediate-risk pulmonary embolism. Am J Ther. 2023; 30(2): e134-e144. 10.1097/MJT.0000000000001605 PubMedWeb of Science®Google Scholar Early ViewOnline Version of Record before inclusion in an issuee14171 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文雪青完成签到,获得积分10
刚刚
慕青应助王文帝采纳,获得10
刚刚
甜味白开水完成签到,获得积分10
1秒前
开心蛋挞发布了新的文献求助10
2秒前
赘婿应助娃哈哈采纳,获得10
2秒前
2秒前
Ya发布了新的文献求助10
2秒前
xmhxpz完成签到,获得积分10
3秒前
情怀应助解灵采纳,获得10
3秒前
terminus完成签到,获得积分0
4秒前
Joker_Xue完成签到 ,获得积分10
4秒前
俏皮的松鼠完成签到 ,获得积分10
4秒前
科目三应助荆轲刺秦王采纳,获得10
5秒前
MWSURE完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
小欧医生完成签到,获得积分10
6秒前
HongJiang完成签到,获得积分10
6秒前
儒雅的蜜粉完成签到,获得积分10
6秒前
6秒前
潇洒绿蕊完成签到,获得积分10
6秒前
Kelly完成签到,获得积分10
6秒前
hajy完成签到 ,获得积分10
7秒前
yuze发布了新的文献求助10
8秒前
共享精神应助敏敏采纳,获得20
8秒前
lebron发布了新的文献求助10
8秒前
9秒前
free发布了新的文献求助10
9秒前
丘比特应助hopen采纳,获得10
10秒前
小星星完成签到 ,获得积分10
10秒前
daladidala发布了新的文献求助10
11秒前
ider完成签到 ,获得积分10
11秒前
SQL完成签到 ,获得积分10
12秒前
王文帝发布了新的文献求助10
12秒前
123456发布了新的文献求助30
12秒前
13秒前
化学胖子完成签到,获得积分10
13秒前
烂漫的书蕾完成签到,获得积分10
14秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099914
求助须知:如何正确求助?哪些是违规求助? 2751373
关于积分的说明 7613446
捐赠科研通 2403368
什么是DOI,文献DOI怎么找? 1275253
科研通“疑难数据库(出版商)”最低求助积分说明 616318
版权声明 599053