Multimodal-based machine learning approach to classify features of internet gaming disorder and alcohol use disorder: A sensor-level and source-level resting-state electroencephalography activity and neuropsychological study

脑电图 神经心理学 心理学 冲动性 上瘾 人工智能 酒精使用障碍 特征(语言学) 大脑活动与冥想 机器学习 认知 计算机科学 精神科 生物化学 化学 语言学 哲学
作者
Ji-Yoon Lee,Myeong Seop Song,So Young Yoo,Joon Hwan Jang,Deokjong Lee,Young‐Chul Jung,Woo-Young Ahn,Jung Seok Choi
出处
期刊:Comprehensive Psychiatry [Elsevier]
卷期号:130: 152460-152460
标识
DOI:10.1016/j.comppsych.2024.152460
摘要

Addictions have recently been classified as substance use disorder (SUD) and behavioral addiction (BA), but the concept of BA is still debatable. Therefore, it is necessary to conduct further neuroscientific research to understand the mechanisms of BA to the same extent as SUD. The present study used machine learning (ML) algorithms to investigate the neuropsychological and neurophysiological aspects of addictions in individuals with internet gaming disorder (IGD) and alcohol use disorder (AUD).We developed three models for distinguishing individuals with IGD from those with AUD, individuals with IGD from healthy controls (HCs), and individuals with AUD from HCs using ML algorithms, including L1-norm support vector machine, random forest, and L1-norm logistic regression (LR). Three distinct feature sets were used for model training: a unimodal-electroencephalography (EEG) feature set combined with sensor- and source-level feature; a unimodal-neuropsychological feature (NF) set included sex, age, depression, anxiety, impulsivity, and general cognitive function, and a multimodal (EEG + NF) feature set.The LR model with the multimodal feature set used for the classification of IGD and AUD outperformed the other models (accuracy: 0.712). The important features selected by the model highlighted that the IGD group had differential delta and beta source connectivity between right intrahemispheric regions and distinct sensor-level EEG activities. Among the NFs, sex and age were the important features for good model performance.Using ML techniques, we demonstrated the neurophysiological and neuropsychological similarities and differences between IGD (a BA) and AUD (a SUD).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
淡定小懒猪完成签到,获得积分10
1秒前
0411345发布了新的文献求助10
1秒前
winterm发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
火星完成签到 ,获得积分10
4秒前
4秒前
Ahha发布了新的文献求助10
4秒前
顾矜应助顺利数据线采纳,获得10
5秒前
QLR发布了新的文献求助10
5秒前
喵总完成签到,获得积分10
5秒前
拟岸完成签到,获得积分10
6秒前
LBW发布了新的文献求助10
6秒前
zs33发布了新的文献求助10
6秒前
热情的汲发布了新的文献求助10
6秒前
7秒前
共享精神应助Conran采纳,获得10
7秒前
木子木公发布了新的文献求助20
8秒前
8秒前
KYRIAL发布了新的文献求助10
8秒前
9秒前
研友_ZlPNaZ完成签到,获得积分10
10秒前
Xiao风啊发布了新的文献求助10
10秒前
10秒前
7777135发布了新的文献求助10
11秒前
tyanna完成签到,获得积分20
13秒前
13秒前
14秒前
拟岸发布了新的文献求助10
14秒前
小亿发布了新的文献求助10
14秒前
科目三应助jianning采纳,获得10
14秒前
orixero应助QLR采纳,获得10
16秒前
18秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
宽禁带半导体紫外光电探测器 588
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141967
求助须知:如何正确求助?哪些是违规求助? 2792975
关于积分的说明 7804827
捐赠科研通 2449305
什么是DOI,文献DOI怎么找? 1303150
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291