Multimodal-based machine learning approach to classify features of internet gaming disorder and alcohol use disorder: A sensor-level and source-level resting-state electroencephalography activity and neuropsychological study

脑电图 神经心理学 心理学 静息状态功能磁共振成像 人工智能 酒精使用障碍 听力学 胎儿酒精谱系障碍 认知 认知心理学 计算机科学 神经科学 精神科 医学 生物 生物化学 化学 怀孕 遗传学
作者
Jiyoon Lee,Myeong Seop Song,So Young Yoo,Joon Hwan Jang,Deokjong Lee,Young‐Chul Jung,Woo‐Young Ahn,Jung‐Seok Choi
出处
期刊:Comprehensive Psychiatry [Elsevier]
卷期号:130: 152460-152460 被引量:7
标识
DOI:10.1016/j.comppsych.2024.152460
摘要

Addictions have recently been classified as substance use disorder (SUD) and behavioral addiction (BA), but the concept of BA is still debatable. Therefore, it is necessary to conduct further neuroscientific research to understand the mechanisms of BA to the same extent as SUD. The present study used machine learning (ML) algorithms to investigate the neuropsychological and neurophysiological aspects of addictions in individuals with internet gaming disorder (IGD) and alcohol use disorder (AUD). We developed three models for distinguishing individuals with IGD from those with AUD, individuals with IGD from healthy controls (HCs), and individuals with AUD from HCs using ML algorithms, including L1-norm support vector machine, random forest, and L1-norm logistic regression (LR). Three distinct feature sets were used for model training: a unimodal-electroencephalography (EEG) feature set combined with sensor- and source-level feature; a unimodal-neuropsychological feature (NF) set included sex, age, depression, anxiety, impulsivity, and general cognitive function, and a multimodal (EEG + NF) feature set. The LR model with the multimodal feature set used for the classification of IGD and AUD outperformed the other models (accuracy: 0.712). The important features selected by the model highlighted that the IGD group had differential delta and beta source connectivity between right intrahemispheric regions and distinct sensor-level EEG activities. Among the NFs, sex and age were the important features for good model performance. Using ML techniques, we demonstrated the neurophysiological and neuropsychological similarities and differences between IGD (a BA) and AUD (a SUD).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助Yuki0616采纳,获得10
刚刚
小马甲应助鸣隐采纳,获得10
刚刚
ycd完成签到,获得积分10
1秒前
ark861023完成签到,获得积分10
1秒前
淡定问芙完成签到,获得积分10
1秒前
斯文败类应助惠惠采纳,获得10
2秒前
2秒前
Meowly完成签到,获得积分10
2秒前
3秒前
3秒前
陶醉觅夏发布了新的文献求助10
3秒前
pu完成签到,获得积分10
3秒前
小灵通完成签到,获得积分10
3秒前
给我找发布了新的文献求助10
3秒前
科研通AI2S应助LIn采纳,获得10
4秒前
gaga完成签到,获得积分10
4秒前
_Charmo完成签到,获得积分10
4秒前
Slemon完成签到,获得积分10
4秒前
谦谦姜完成签到,获得积分10
6秒前
7秒前
JINGZHANG发布了新的文献求助10
7秒前
7秒前
归海天与应助糊弄学专家采纳,获得10
7秒前
风中的青完成签到,获得积分10
8秒前
8秒前
8秒前
duxinyue关注了科研通微信公众号
9秒前
超级宇宙二踢脚关注了科研通微信公众号
9秒前
10秒前
10秒前
11秒前
务实盼海发布了新的文献求助10
11秒前
徐徐徐徐发布了新的文献求助10
12秒前
星晴遇见花海完成签到,获得积分10
12秒前
乐乐应助Rrr采纳,获得10
13秒前
难过鸿涛应助srt采纳,获得10
14秒前
15秒前
卡卡发布了新的文献求助10
15秒前
15秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794