重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Multimodal-based machine learning approach to classify features of internet gaming disorder and alcohol use disorder: A sensor-level and source-level resting-state electroencephalography activity and neuropsychological study

脑电图 神经心理学 心理学 静息状态功能磁共振成像 人工智能 酒精使用障碍 听力学 胎儿酒精谱系障碍 认知 认知心理学 计算机科学 神经科学 精神科 医学 生物 化学 生物化学 怀孕 遗传学
作者
Jiyoon Lee,Myeong Seop Song,So Young Yoo,Joon Hwan Jang,Deokjong Lee,Young‐Chul Jung,Woo‐Young Ahn,Jung‐Seok Choi
出处
期刊:Comprehensive Psychiatry [Elsevier]
卷期号:130: 152460-152460 被引量:9
标识
DOI:10.1016/j.comppsych.2024.152460
摘要

Addictions have recently been classified as substance use disorder (SUD) and behavioral addiction (BA), but the concept of BA is still debatable. Therefore, it is necessary to conduct further neuroscientific research to understand the mechanisms of BA to the same extent as SUD. The present study used machine learning (ML) algorithms to investigate the neuropsychological and neurophysiological aspects of addictions in individuals with internet gaming disorder (IGD) and alcohol use disorder (AUD). We developed three models for distinguishing individuals with IGD from those with AUD, individuals with IGD from healthy controls (HCs), and individuals with AUD from HCs using ML algorithms, including L1-norm support vector machine, random forest, and L1-norm logistic regression (LR). Three distinct feature sets were used for model training: a unimodal-electroencephalography (EEG) feature set combined with sensor- and source-level feature; a unimodal-neuropsychological feature (NF) set included sex, age, depression, anxiety, impulsivity, and general cognitive function, and a multimodal (EEG + NF) feature set. The LR model with the multimodal feature set used for the classification of IGD and AUD outperformed the other models (accuracy: 0.712). The important features selected by the model highlighted that the IGD group had differential delta and beta source connectivity between right intrahemispheric regions and distinct sensor-level EEG activities. Among the NFs, sex and age were the important features for good model performance. Using ML techniques, we demonstrated the neurophysiological and neuropsychological similarities and differences between IGD (a BA) and AUD (a SUD).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
传奇3应助lqq采纳,获得10
1秒前
1秒前
L_完成签到,获得积分10
2秒前
所所应助xin采纳,获得10
2秒前
所所应助zhuchenglu采纳,获得10
3秒前
ikochou完成签到,获得积分20
3秒前
BY0131完成签到,获得积分20
3秒前
3秒前
再沉默完成签到,获得积分10
3秒前
4秒前
XIAOYU发布了新的文献求助10
5秒前
科研通AI6应助晨芒采纳,获得10
5秒前
5秒前
科研通AI6应助丸子采纳,获得10
6秒前
LZ发布了新的文献求助10
6秒前
Chichi完成签到,获得积分10
6秒前
GHJ发布了新的文献求助10
6秒前
斯文败类应助ikochou采纳,获得10
6秒前
无极微光应助迷路的谷南采纳,获得20
6秒前
zhm发布了新的文献求助10
6秒前
7秒前
8秒前
Ava应助俊秀的代天采纳,获得10
8秒前
9秒前
傻狗完成签到,获得积分10
9秒前
汤汤杨杨完成签到,获得积分10
10秒前
10秒前
Lee完成签到 ,获得积分10
10秒前
肥四完成签到,获得积分10
11秒前
orixero应助无际的星空下采纳,获得10
11秒前
11秒前
淡淡尔烟完成签到,获得积分20
11秒前
研友_VZG7GZ应助Rain采纳,获得10
11秒前
12秒前
长生完成签到 ,获得积分10
13秒前
和谐半仙完成签到,获得积分20
13秒前
sxl发布了新的文献求助10
13秒前
乐观半凡完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567