催化作用
化学
键裂
丙烷
光化学
吸附
过渡金属
烷烃
氧化还原
金属
氧气
无机化学
物理化学
有机化学
作者
Lianghui Xia,Yanfei Jian,Qiyuan Liu,Yujie Liu,Jingjing Wang,Shouning Chai,Meizan Jing,Reem Albilali,Chi He
标识
DOI:10.1021/acs.est.3c06916
摘要
Light alkanes (LAs), typical VOCs existing in both stationary and mobile sources, pose significant environmental concerns. Although noble metal catalysts demonstrate strong C–H bond activation, their effectiveness in degrading LAs is hindered by inherent challenges, including poor chemical stability and water resistance. Here, from a new perspective, we propose a feasible strategy that adjusting the metal bond lengths within Pd clusters through partial substitution of smaller radius 3d transition metals (3dTMs) to prioritize the activation of low-energy C–C bonds within LAs. Benefiting from this, PdCo/CeO2 exhibits exceptional catalytic performance in propane degradation due to their high capacity for C–C cleavage stemming from the shorter Pd–Co length (2.51 Å) and lower coordination number (1.73), boosting the activation of α-H and β-H of propane simultaneously and accelerating the mobility of postactivated oxygen species to prevent Pd center deep oxidation. The presence of 3dTMs on Pd clusters improves the redox and charge transfer ability of catalysts, resulting in an amplified generation of oxygen vacancies and facilitating the adsorption and activation of reactants. Mechanistic studies and DFT calculations suggest that the substitution of 3dTMs significantly accelerate C–C bond cleavage within C3 intermediates to generate the subsequent C2 and C1 intermediates, suppressing the generation of harmful byproducts.
科研通智能强力驱动
Strongly Powered by AbleSci AI