GAN with opposition-based blocks and channel self-attention mechanism for image synthesis

计算机科学 生成语法 人工智能 反对派(政治) 规范化(社会学) 算法 数据挖掘 政治学 人类学 政治 社会学 法学
作者
Gang Liu,Aihua Ke,Xinyun Wu,Haifeng Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:246: 123242-123242 被引量:5
标识
DOI:10.1016/j.eswa.2024.123242
摘要

Recently, image synthesis has always been a research hotspot in the field of deep learning. Generally, the methods based on generative adversarial networks (GANs) directly feed the semantic layout as input to obtain the photorealistic images for image synthesis. However, these methods based on GANs have not achieved satisfactory reconstructed results in quality. One of the main reasons is that the normalization layers in these methods will cause the loss of the semantic information. Another of the main reason is that the information contained in the semantic layout is sparse. In order to solve the above problems, GAN with opposition-based blocks and channel self-attention mechanism (OCGAN) is proposed. In OCGAN, the opposition-based learning method and the proposed adaptive normalization method are used to design the opposition-based blocks (OB Blks). The proposed channel self-attention mechanism (CSAM) is employed to give different focus to each channel of the semantic layout. The generator of OCGAN uses the opposition-based blocks and the channel self-attention mechanism to maintain and capture the important details from the semantic layouts. Experiments on several challenging datasets demonstrate the advantages of our method over existing approaches, regarding both visual quality and the representative evaluating criteria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
czb完成签到 ,获得积分10
刚刚
眯眯眼的忆山完成签到,获得积分10
1秒前
1秒前
3秒前
LEMONS应助Camellia采纳,获得10
4秒前
Jane发布了新的文献求助10
4秒前
橘橘完成签到,获得积分10
4秒前
赘婿应助YXH采纳,获得10
4秒前
5秒前
安静沅发布了新的文献求助20
6秒前
李小狼不浪完成签到,获得积分10
7秒前
7秒前
wf发布了新的文献求助10
7秒前
执城完成签到,获得积分10
8秒前
章铭-111发布了新的文献求助10
9秒前
10秒前
pangqiu应助背后的小白菜采纳,获得10
12秒前
深情安青应助Jane采纳,获得10
12秒前
可爱的函函应助童绾绾采纳,获得10
13秒前
hhh完成签到 ,获得积分10
14秒前
清辉夜凝完成签到 ,获得积分10
14秒前
希望天下0贩的0应助Camellia采纳,获得10
15秒前
吐个泡泡发布了新的文献求助10
15秒前
Sunnig盈完成签到,获得积分10
15秒前
Gauze完成签到,获得积分10
16秒前
所所应助yx_cheng采纳,获得10
17秒前
17秒前
17秒前
CipherSage应助安静沅采纳,获得10
17秒前
18秒前
我就是我Andre完成签到,获得积分0
18秒前
慕青应助王大帅采纳,获得10
18秒前
淡淡夕阳发布了新的文献求助10
20秒前
21秒前
称心的又亦完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
laallaall应助包包琪采纳,获得10
22秒前
大海发布了新的文献求助10
22秒前
李健的粉丝团团长应助Myx采纳,获得10
24秒前
温暖白容完成签到 ,获得积分20
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956295
求助须知:如何正确求助?哪些是违规求助? 3502477
关于积分的说明 11107954
捐赠科研通 3233164
什么是DOI,文献DOI怎么找? 1787196
邀请新用户注册赠送积分活动 870506
科研通“疑难数据库(出版商)”最低求助积分说明 802105