GAN with opposition-based blocks and channel self-attention mechanism for image synthesis

计算机科学 生成语法 人工智能 反对派(政治) 规范化(社会学) 算法 数据挖掘 政治学 人类学 政治 社会学 法学
作者
Gang Liu,Aihua Ke,Xinyun Wu,Haifeng Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:246: 123242-123242 被引量:5
标识
DOI:10.1016/j.eswa.2024.123242
摘要

Recently, image synthesis has always been a research hotspot in the field of deep learning. Generally, the methods based on generative adversarial networks (GANs) directly feed the semantic layout as input to obtain the photorealistic images for image synthesis. However, these methods based on GANs have not achieved satisfactory reconstructed results in quality. One of the main reasons is that the normalization layers in these methods will cause the loss of the semantic information. Another of the main reason is that the information contained in the semantic layout is sparse. In order to solve the above problems, GAN with opposition-based blocks and channel self-attention mechanism (OCGAN) is proposed. In OCGAN, the opposition-based learning method and the proposed adaptive normalization method are used to design the opposition-based blocks (OB Blks). The proposed channel self-attention mechanism (CSAM) is employed to give different focus to each channel of the semantic layout. The generator of OCGAN uses the opposition-based blocks and the channel self-attention mechanism to maintain and capture the important details from the semantic layouts. Experiments on several challenging datasets demonstrate the advantages of our method over existing approaches, regarding both visual quality and the representative evaluating criteria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙留香发布了新的文献求助10
1秒前
Moonboss完成签到 ,获得积分10
1秒前
Akim应助隐形亦竹采纳,获得10
5秒前
galaxy完成签到 ,获得积分10
6秒前
平生完成签到 ,获得积分10
6秒前
zcydbttj2011发布了新的文献求助10
7秒前
清爽沛槐完成签到,获得积分10
10秒前
sure完成签到 ,获得积分10
10秒前
11秒前
11秒前
13秒前
14秒前
14秒前
16秒前
xiaixax发布了新的文献求助10
16秒前
金桔完成签到,获得积分10
16秒前
17秒前
大黄发布了新的文献求助10
17秒前
香蕉海白发布了新的文献求助10
18秒前
18秒前
zimmermen发布了新的文献求助10
19秒前
小马甲应助科研通管家采纳,获得10
21秒前
iNk应助科研通管家采纳,获得10
21秒前
刘荻萩应助科研通管家采纳,获得20
21秒前
Orange应助科研通管家采纳,获得10
22秒前
我是老大应助Aaaaguo采纳,获得10
22秒前
小二郎应助科研通管家采纳,获得10
22秒前
22秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
Orange应助科研通管家采纳,获得10
22秒前
是榤啊发布了新的文献求助10
22秒前
Leslie发布了新的文献求助10
22秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
23秒前
CipherSage应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
24秒前
所所应助cskk采纳,获得10
27秒前
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667802
求助须知:如何正确求助?哪些是违规求助? 3226272
关于积分的说明 9768903
捐赠科研通 2936222
什么是DOI,文献DOI怎么找? 1608316
邀请新用户注册赠送积分活动 759622
科研通“疑难数据库(出版商)”最低求助积分说明 735407