核酸
DNA
序列(生物学)
分子
化学
纳米技术
计算生物学
材料科学
生物化学
生物
有机化学
作者
Luona Zhang,Selma Piranej,A Namazi,Steven Narum,Khalid Salaita
标识
DOI:10.1002/ange.202316851
摘要
Abstract DNA motors that consume chemical energy to generate processive mechanical motion mimic natural motor proteins and have garnered interest due to their potential applications in dynamic nanotechnology, biosensing, and drug delivery. Such motors translocate by a catalytic cycle of binding, cleavage, and rebinding between DNA “legs” on the motor body and RNA “footholds” on a track. Herein, we address the well‐documented trade‐off between motor speed and processivity and investigate how these parameters are controlled by the affinity between DNA legs and their complementary footholds. Specifically, we explore the role of DNA leg length and GC content in tuning motor performance by dictating the rate of leg‐foothold dissociation. Our investigations reveal that motors with 0 % GC content exhibit increased instantaneous velocities of up to 150 nm/sec, three‐fold greater than previously reported DNA motors and comparable to the speeds of biological motor proteins. We also demonstrate that the faster speed and weaker forces generated by 0 % GC motors can be leveraged for enhanced capabilities in sensing. We observe single‐molecule sensitivity when programming the motors to stall in response to the binding of nucleic acid targets. These findings offer insights for the design of high‐performance DNA motors with promising real‐world biosensing applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI