Path planning algorithms in the autonomous driving system: A comprehensive review

计算机科学 最大值和最小值 运动规划 启发式 路径(计算) 趋同(经济学) 机器学习 人工智能 算法 图形 理论计算机科学 数学分析 数学 机器人 经济 程序设计语言 经济增长
作者
Mohamed Reda,Ahmed Onsy,Amira Y. Haikal,Ali Ghanbari Sorkhi
出处
期刊:Robotics and Autonomous Systems [Elsevier]
卷期号:174: 104630-104630 被引量:195
标识
DOI:10.1016/j.robot.2024.104630
摘要

This comprehensive review focuses on the Autonomous Driving System (ADS), which aims to reduce human errors that are the reason for about 95% of car accidents. The ADS consists of six stages: sensors, perception, localization, assessment, path planning, and control. We explain the main state-of-the-art techniques used in each stage, analyzing 275 papers, with 162 specifically on path planning due to its complexity, NP-hard optimization nature, and pivotal role in ADS. This paper categorizes path planning techniques into three primary groups: traditional (graph-based, sampling-based, gradient-based, optimization-based, interpolation curve algorithms), machine and deep learning, and meta-heuristic optimization, detailing their advantages and drawbacks. Findings show that meta-heuristic optimization methods, representing 23% of our study, are preferred for being general problem solvers capable of handling complex problems. In addition, they have faster convergence and reduced risk of local minima. Machine and deep learning techniques, accounting for 25%, are favored for their learning capabilities and fast responses to known scenarios. The trend toward hybrid algorithms (27%) combines various methods, merging each algorithm’s benefits and overcoming the other’s drawbacks. Moreover, adaptive parameter tuning is crucial to enhance efficiency, applicability, and balancing the search capability. This review sheds light on the future of path planning in autonomous driving systems, helping to tackle current challenges and unlock the full capabilities of autonomous vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
CipherSage应助fxxk采纳,获得20
1秒前
sxb10101应助积极诗霜采纳,获得50
2秒前
fucccboi发布了新的文献求助10
2秒前
HeySue完成签到,获得积分10
2秒前
2秒前
2秒前
白桃枝完成签到,获得积分10
3秒前
3秒前
3秒前
张梦迪完成签到,获得积分10
3秒前
yy发布了新的文献求助10
3秒前
4秒前
彭于晏应助yjj采纳,获得30
5秒前
5秒前
akun发布了新的文献求助10
5秒前
科研人发布了新的文献求助10
6秒前
科目三应助fucccboi采纳,获得10
6秒前
6秒前
结实的栾完成签到,获得积分10
6秒前
汉堡包应助Affenyi采纳,获得10
6秒前
浮游应助铁头哇采纳,获得10
6秒前
香蕉觅云应助hh采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
我们仨完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
甲木发布了新的文献求助10
7秒前
完美世界应助朴实雨柏采纳,获得10
7秒前
陌弋完成签到,获得积分10
8秒前
lucky发布了新的文献求助10
8秒前
选择性哑巴完成签到,获得积分10
8秒前
炖地瓜发布了新的文献求助10
9秒前
9秒前
9秒前
两仪完成签到,获得积分10
9秒前
9秒前
丘比特应助fmmuxiaoqiang采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721