A Spatiotemporal Prediction Network for Vehicle Emissions on Large Road Network

计算机科学 注意力网络 图形 特征(语言学) 特征学习 代表(政治) 光学(聚焦) 计算复杂性理论 数据挖掘 人工智能 理论计算机科学 算法 物理 哲学 光学 政治 法学 语言学 政治学
作者
Zhenyi Zhao,Yang Cao,Lihong Pei,Yu Kang
标识
DOI:10.1109/dtpi59677.2023.10365420
摘要

Prediction of vehicle emissions on urban road networks can serve for intelligent vehicles to avoid high-emission driving modes and routes through high-emission roads. However, existing methods focus on the spatiotemporal features of emissions based on graph representation learning. Little attention has been given to the challenge of computational complexity when constructing deep networks for global feature aggregation in cases where the number of road nodes is large. In light of these limitations, a spatiotemporal transformer network for emission prediction is proposed. Specifically, the proposed network utilizes the spatiotemporal self-attention mechanism to aggregate embedded features, which is achieved through the dynamic attention weight to select crucial features. Furthermore, a graph reconstruction module is introduced to transform the original road network into a second-order connected graph, which ensures global feature propagation while reducing the complexity of secondary calculations for self-attention. The experimental results demonstrate that the proposed network achieves better prediction accuracy than existing methods when tested on the Xi’an vehicle emission dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
之后再说咯完成签到 ,获得积分10
2秒前
2秒前
Phil发布了新的文献求助10
3秒前
美丽的怀蕊完成签到,获得积分10
5秒前
苛帅发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
亮亮完成签到 ,获得积分10
7秒前
7秒前
充电宝应助长策硕贤采纳,获得10
9秒前
HYT完成签到,获得积分10
10秒前
huangyao发布了新的文献求助10
12秒前
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
Owen应助小小K采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
Logan应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
14秒前
zizi完成签到 ,获得积分10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
15秒前
熬夜波比应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
15秒前
15秒前
Icrus应助科研通管家采纳,获得10
15秒前
memedaaaah完成签到,获得积分10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675761
求助须知:如何正确求助?哪些是违规求助? 4948864
关于积分的说明 15154614
捐赠科研通 4835061
什么是DOI,文献DOI怎么找? 2589850
邀请新用户注册赠送积分活动 1543573
关于科研通互助平台的介绍 1501325