Greening the E7 environment: how can renewable and nuclear energy moderate financial development, natural resources, and digitalization towards the target?

持续性 人均 自然资源 自然资源经济学 生态足迹 人口 可再生能源 人口增长 可持续发展 经济 温室气体 碳足迹 业务 环境经济学 环境资源管理 生态学 生物 社会学 人口学
作者
Xinwen Zhang,Guang Yu,Ridwan Lanre Ibrahim,Kiyosov Sherzod Uralovich
出处
期刊:International Journal of Sustainable Development and World Ecology [Informa]
卷期号:31 (4): 447-465 被引量:14
标识
DOI:10.1080/13504509.2023.2296504
摘要

This study examines the extent to which green energy vectoring renewable energy and nuclear energy moderates the effects of natural resource dependence and digitalization on environmental sustainability (measured by carbon emissions per capita and ecological footprint) in selected emerging seven (E7) countries. The study considers the intervening roles of financial development, economic growth, and population growth from 1996 to 2019. The verification of the empirical hypotheses anchors on advanced estimating techniques comprising cross-sectional dependence autoregressive distributed lag and augmented mean group. Results reveal that natural resource dependence and financial development hinder the attainment of environmental sustainability by inducing significant rise in carbon emissions per capita and ecological footprint. Conversely, digitalization promotes the strides toward environmental sustainability by significantly mitigating the surge in both pollutants. The direct and indirect effects of green energy are observed to sufficiently promote environmental sustainability. Moreover, while economic growth in the selected economies displays a significant level of support for sustainability targets, population growth portrays otherwise. Besides, the country-level analyses anchored on Fully Modified OLS show that natural resource dependence significantly hinders sustainability targets in Russia alone. More so, the existence of EKC finds support in Brazil and Mexico. Policy insights emanate from the findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TQY完成签到,获得积分10
刚刚
刚刚
郇郇发布了新的文献求助10
刚刚
孟缇发布了新的文献求助10
1秒前
Zn应助chlorine采纳,获得10
1秒前
小人物完成签到,获得积分10
2秒前
完美世界应助北风采纳,获得10
2秒前
2秒前
wei完成签到,获得积分20
2秒前
FashionBoy应助扶手采纳,获得10
2秒前
等待紫菱发布了新的文献求助10
2秒前
wurui完成签到,获得积分10
2秒前
Sugaryeah发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
长情的大门完成签到,获得积分20
3秒前
3秒前
共享精神应助zhouyi采纳,获得10
3秒前
Hum0ro98发布了新的文献求助10
3秒前
岁月轮回发布了新的文献求助10
4秒前
随心完成签到,获得积分10
4秒前
4秒前
6秒前
小人物发布了新的文献求助10
6秒前
6秒前
non发布了新的文献求助10
6秒前
7秒前
lily336699发布了新的文献求助30
8秒前
SciGPT应助花花采纳,获得10
8秒前
Sugaryeah完成签到,获得积分10
8秒前
bkagyin应助轻吟采纳,获得10
8秒前
Lucas应助可靠从云采纳,获得30
9秒前
xianhe发布了新的文献求助10
9秒前
佛了欢喜发布了新的文献求助30
9秒前
简单双组完成签到,获得积分10
9秒前
爆米花应助ZWGS采纳,获得10
9秒前
Lyric完成签到,获得积分10
10秒前
木棉完成签到,获得积分10
10秒前
Valley发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553582
求助须知:如何正确求助?哪些是违规求助? 3129521
关于积分的说明 9382550
捐赠科研通 2828636
什么是DOI,文献DOI怎么找? 1555065
邀请新用户注册赠送积分活动 725800
科研通“疑难数据库(出版商)”最低求助积分说明 715212